Abstract
Background: Zinc Finger Nucleases (ZFNs) have tremendous potential as tools to facilitate genomic modifications, such as precise gene knockouts or gene replacements by homologous recombination. ZFNs can be used to advance both basic research and clinical applications, including gene therapy. Recently, the ability to engineer ZFNs that target any desired genomic DNA sequence with high fidelity has improved significantly with the introduction of rapid, robust, and publicly available techniques for ZFN design such as the Oligomerized Pool ENgineering (OPEN) method. The motivation for this study is to make resources for genome modifications using OPEN-generated ZFNs more accessible to researchers by creating a user-friendly interface that identifies and provides quality scores for all potential ZFN target sites in the complete genomes of several model organisms.Description: ZFNGenome is a GBrowse-based tool for identifying and visualizing potential target sites for OPEN-generated ZFNs. ZFNGenome currently includes a total of more than 11.6 million potential ZFN target sites, mapped within the fully sequenced genomes of seven model organisms; S. cerevisiae, C. reinhardtii, A. thaliana, D. melanogaster, D. rerio, C. elegans, and H. sapiens and can be visualized within the flexible GBrowse environment. Additional model organisms will be included in future updates. ZFNGenome provides information about each potential ZFN target site, including its chromosomal location and position relative to transcription initiation site(s). Users can query ZFNGenome using several different criteria (e.g., gene ID, transcript ID, target site sequence). Tracks in ZFNGenome also provide "uniqueness" and ZiFOpT (Zinc Finger OPEN Targeter) "confidence" scores that estimate the likelihood that a chosen ZFN target site will function in vivo. ZFNGenome is dynamically linked to ZiFDB, allowing users access to all available information about zinc finger reagents, such as the effectiveness of a given ZFN in creating double-stranded breaks.Conclusions: ZFNGenome provides a user-friendly interface that allows researchers to access resources and information regarding genomic target sites for engineered ZFNs in seven model organisms. This genome-wide database of potential ZFN target sites should greatly facilitate the utilization of ZFNs in both basic and clinical research.ZFNGenome is freely available at: http://bindr.gdcb.iastate.edu/ZFNGenome or at the Zinc Finger Consortium website: http://www.zincfingers.org/.
Original language | English (US) |
---|---|
Article number | 83 |
Journal | BMC Genomics |
Volume | 12 |
DOIs | |
State | Published - Jan 28 2011 |
Bibliographical note
Funding Information:We thank members of our research groups for helpful discussions and Chris Campbell for assistance with 64 bit conversion. We also thank Jo Anne Powell-Coffman, Jeff Essner, David Wright, Ben Lewis and Rasna Walia for critical comments on the ZFNGenome server and the manuscript. This work was supported by NSF DBI 0923827 to DFV, DD, and JKJ, NIH grants R01 GM069906 and R01 GM088040 to JKJ, The Roy J. Carver Charitable Trust 08-3185 to CRC, and the Center for Integrated Animal Genomics at Iowa State University to DD. JDS was supported by the NIH T32 CA009216.