ZEROTH-ORDER FINE-TUNING OF LLMS WITH TRANSFERABLE STATIC SPARSITY

Wentao Guo, Jikai Long, Yimeng Zeng, Zirui Liu, Xinyu Yang, Yide Ran, Jacob Gardner, Osbert Bastani, Christopher De Sa, Xiaodong Yu, Beidi Chen, Zhaozhuo Xu

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Zeroth-order optimization (ZO) is a memory-efficient strategy for fine-tuning Large Language Models using only forward passes. However, applying ZO fine-tuning in memory-constrained settings such as mobile phones and laptops remains challenging since these settings often involve weight quantization, while ZO requires full-precision perturbation and update. In this study, we address this limitation by combining static sparse ZO fine-tuning with quantization. Our approach transfers a small, static subset (0.1%) of "sensitive" parameters from pre-training to downstream tasks, focusing fine-tuning on this sparse set of parameters. The remaining untuned parameters are quantized, reducing memory demands. Our proposed workflow enables efficient ZO fine-tuning of an Llama2-7B model on a GPU device with less than 8GB of memory while outperforming full model ZO fine-tuning performance and in-context learning. We provide an open-source implementation at https://github.com/GarlGuo/SensZOQ.

Original languageEnglish (US)
Title of host publication13th International Conference on Learning Representations, ICLR 2025
PublisherInternational Conference on Learning Representations, ICLR
Pages59924-59964
Number of pages41
ISBN (Electronic)9798331320850
StatePublished - 2025
Event13th International Conference on Learning Representations, ICLR 2025 - Singapore, Singapore
Duration: Apr 24 2025Apr 28 2025

Publication series

Name13th International Conference on Learning Representations, ICLR 2025

Conference

Conference13th International Conference on Learning Representations, ICLR 2025
Country/TerritorySingapore
CitySingapore
Period4/24/254/28/25

Bibliographical note

Publisher Copyright:
© 2025 13th International Conference on Learning Representations, ICLR 2025. All rights reserved.

Fingerprint

Dive into the research topics of 'ZEROTH-ORDER FINE-TUNING OF LLMS WITH TRANSFERABLE STATIC SPARSITY'. Together they form a unique fingerprint.

Cite this