Zero-Shot Link Prediction in Knowledge Graphs with Large Language Models

Mingchen Li, Chen Ling, Rui Zhang, Liang Zhao

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Zero-shot link prediction (ZSLP) on knowledge graphs aims at automatically identifying relations between given entities. Existing methods primarily employ auxiliary information to predict tail entity given head entity and its relation, yet face challenges due to the occasional unavailability of such detailed information and the inherent simplicity of predicting tail entities based on semantic similarities. Even though Large Language Models (LLMs) offer a promising solution to predict unobserved relations between the head and tail entity in a zero-shot manner, their performance is still restricted due to the inability to leverage all the (exponentially many) paths' information between two entities, which are critical in collectively indicating their relation types. To address this, in this work, we introduce a Condensed Transition Graph Framework for Zero-Shot Link Prediction (CTLP), which encodes all the paths' information in linear time complexity to predict unseen relations between entities, attaining both efficiency and information preservation. Specifically, we design a condensed transition graph encoder with theoretical guarantees on its coverage, expressiveness, and efficiency. It is learned by a transition graph contrastive learning strategy. Subsequently, we design a soft instruction tuning to learn and map the all-path embedding to the input of LLMs. Experimental results show that our proposed CTLP method achieves state-of-the-art performance on three standard ZSLP datasets.11The code is available here: https://github.com/ToneLi/Graph_LLM_link_predcition

Original languageEnglish (US)
Title of host publicationProceedings - 24th IEEE International Conference on Data Mining, ICDM 2024
EditorsElena Baralis, Kun Zhang, Ernesto Damiani, Merouane Debbah, Panos Kalnis, Xindong Wu
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages753-760
Number of pages8
ISBN (Electronic)9798331506681
DOIs
StatePublished - 2024
Event24th IEEE International Conference on Data Mining, ICDM 2024 - Abu Dhabi, United Arab Emirates
Duration: Dec 9 2024Dec 12 2024

Publication series

NameProceedings - IEEE International Conference on Data Mining, ICDM
ISSN (Print)1550-4786

Conference

Conference24th IEEE International Conference on Data Mining, ICDM 2024
Country/TerritoryUnited Arab Emirates
CityAbu Dhabi
Period12/9/2412/12/24

Bibliographical note

Publisher Copyright:
© 2024 IEEE.

Keywords

  • Condensed Transition Graph
  • Large Language Models
  • Zero-Shot Link Prediction

Fingerprint

Dive into the research topics of 'Zero-Shot Link Prediction in Knowledge Graphs with Large Language Models'. Together they form a unique fingerprint.

Cite this