Zero-energy peak and triplet correlations in nanoscale superconductor/ferromagnet/ferromagnet spin valves

Mohammad Alidoust, Klaus Halterman, Oriol T. Valls

Research output: Contribution to journalArticlepeer-review

61 Scopus citations

Abstract

Using a self-consistent Bogoliubov-de Gennes approach, we theoretically study the proximity-induced density of states (DOS) in clean SFF spin valves with noncollinear exchange fields. Our results clearly demonstrate a direct correlation between the presence of a zero-energy peak (ZEP) in the DOS spectrum and the persistence of spin-1 triplet pair correlations. By systematically varying the geometrical and material parameters governing the spin valve, we point out experimentally optimal system configurations where the ZEPs are most pronounced, and which can be effectively probed via scanning tunneling microscopy. We complement these findings in the ballistic regime by employing the Usadel formalism in the full proximity limit to investigate their diffusive SFF counterparts. We determine the optimal normalized ferromagnetic layer thicknesses which result in the largest ZEPs. Our results can serve as guidelines in designing samples for future experiments.

Original languageEnglish (US)
Article number014508
JournalPhysical Review B - Condensed Matter and Materials Physics
Volume92
Issue number1
DOIs
StatePublished - Jul 17 2015

Fingerprint Dive into the research topics of 'Zero-energy peak and triplet correlations in nanoscale superconductor/ferromagnet/ferromagnet spin valves'. Together they form a unique fingerprint.

Cite this