X-ray diffraction and reflectivity validation of the depletion attraction in the competitive adsorption of lung surfactant and albumin

Patrick C. Stenger, Guohui Wu, Chad E. Miller, Eva Y. Chi, Shelli L. Frey, Ka Yee C. Lee, Jaroslaw Majewski, Kristian Kjaer, Joseph A. Zasadzinski

Research output: Contribution to journalArticlepeer-review

18 Scopus citations

Abstract

Lung surfactant (LS) and albumin compete for the air-water interface when both are present in solution. Equilibrium favors LS because it has a lower equilibrium surface pressure, but the smaller albumin is kinetically favored by faster diffusion. Albumin at the interface creates an energy barrier to subsequent LS adsorption that can be overcome by the depletion attraction induced by polyethylene glycol (PEG) in solution. A combination of grazing incidence x-ray diffraction (GIXD), x-ray reflectivity (XR), and pressure-area isotherms provides molecular-resolution information on the location and configuration of LS, albumin, and polymer. XR shows an average electron density similar to that of albumin at low surface pressures, whereas GIXD shows a heterogeneous interface with coexisting LS and albumin domains at higher surface pressures. Albumin induces a slightly larger lattice spacing and greater molecular tilt, similar in effect to a small decrease in the surface ressure. XR shows that adding PEG to the LS-albumin subphase restores the characteristic LS electron density profile at the interface, and confirms that PEG is depleted near the interface. GIXD shows the same LS Bragg peaks and Bragg rods as on a pristine interface, but with a more compact lattice corresponding to a small increase in the surface pressure. These results confirm that albumin adsorption creates a physical barrier that inhibits LS adsorption, and that PEG in the subphase generates a depletion attraction between the LS aggregates and the interface that enhances LS adsorption without substantially altering the structure or properties of the LS monolayer.

Original languageEnglish (US)
Pages (from-to)777-786
Number of pages10
JournalBiophysical journal
Volume97
Issue number3
DOIs
StatePublished - 2009

Bibliographical note

Funding Information:
This work was supported by National Institutes of Health grants HL-66410, HL-51177, and HL-080718. P.C.S. was partially supported by a National Science Foundation graduate research fellowship. J.M. and C.E.M. were supported by the Los Alamos National Laboratory under Department of Energy contract W7405-ENG-36 and by the Department of Energy Office of Basic Engineering Sciences. C.E.M. acknowledges support from the Los Alamos National Laboratory Director's Postdoctoral Fellowship and the Institute for Complex Adaptive Matter.

Fingerprint Dive into the research topics of 'X-ray diffraction and reflectivity validation of the depletion attraction in the competitive adsorption of lung surfactant and albumin'. Together they form a unique fingerprint.

Cite this