X-ray absorption studies of CH3Hg+-binding sites in humic substances

Soh Joung Yoon, Lynn M. Diener, Paul R. Bloom, Edward A. Nater, William F. Bleam

Research output: Contribution to journalArticlepeer-review

43 Scopus citations

Abstract

Methylmercury cation (CH3Hg+) is known to have a strong affinity for organic matter in soil, sedimentary, and aquatic environments. The objective of this study is to determine the dominant ligands binding CH3Hg+ in humic acids by evaluating several CH3Hg+-ligand complexation models, using mercury LIII-edge extended X-ray absorption fine structure (EXAFS). The model CH3Hg+ binding ligands examined in this study include thiol (-SH), hydrogen polysulfide (-SSH or -SSSH), sulfide (-S-), disulfide (-SS-), carboxyl (-COOH), and amine (-NH2). Based on the atomic geometry around mercury in each model structure, we distinguished CH3Hg+ -binding ligands in two different humic acids (soil and aquatic). We observed CH3Hg+ preferentially binds to thiol ligands. After saturating reactive thiol ligands, the majority of CH3Hg+ binds to carboxyl ligands rather than to amine or other reduced sulfur ligands than thiol. We found no evidence of significant CH3Hg+-sulfide/disulfide or CH3Hg+-hydrogen polysulfide complexes in any samples. When CH3Hg+ binds to a humic ligand, the C-Hg bond in CH3Hg+ remains intact. Some heavy atoms are proximately coordinated around the mercury atom in the sample containing the highest CH3Hg+ levels used in this study.

Original languageEnglish (US)
Pages (from-to)1111-1121
Number of pages11
JournalGeochimica et Cosmochimica Acta
Volume69
Issue number5
DOIs
StatePublished - Mar 1 2005

Fingerprint Dive into the research topics of 'X-ray absorption studies of CH<sub>3</sub>Hg<sup>+</sup>-binding sites in humic substances'. Together they form a unique fingerprint.

Cite this