Will seasonally dry tropical forests be sensitive or resistant to future changes in rainfall regimes?

Kara Allen, Juan Manuel Dupuy, Maria G. Gei, Catherine Hulshof, David Medvigy, Camila Pizano, Beatriz Salgado-Negret, Christina M. Smith, Annette Trierweiler, Skip J. Van Bloem, Bonnie G. Waring, Xiangtao Xu, Jennifer S. Powers

Research output: Contribution to journalReview articlepeer-review

162 Scopus citations

Abstract

Seasonally dry tropical forests (SDTF) are located in regions with alternating wet and dry seasons, with dry seasons that last several months or more. By the end of the 21st century, climate models predict substantial changes in rainfall regimes across these regions, but little is known about how individuals, species, and communities in SDTF will cope with the hotter, drier conditions predicted by climate models. In this review, we explore different rainfall scenarios that may result in ecological drought in SDTF through the lens of two alternative hypotheses: 1) these forests will be sensitive to drought because they are already limited by water and close to climatic thresholds, or 2) they will be resistant/resilient to intra- and inter-annual changes in rainfall because they are adapted to predictable, seasonal drought. In our review of literature that spans microbial to ecosystem processes, a majority of the available studies suggests that increasing frequency and intensity of droughts in SDTF will likely alter species distributions and ecosystem processes. Though we conclude that SDTF will be sensitive to altered rainfall regimes, many gaps in the literature remain. Future research should focus on geographically comparative studies and well-replicated drought experiments that can provide empirical evidence to improve simulation models used to forecast SDTF responses to future climate change at coarser spatial and temporal scales.

Original languageEnglish (US)
Article number023001
JournalEnvironmental Research Letters
Volume12
Issue number2
DOIs
StatePublished - Feb 3 2017

Bibliographical note

Publisher Copyright:
© 2017 IOP Publishing Ltd.

Keywords

  • belowground processes
  • climate change
  • drought
  • functional traits
  • precipitation variability
  • tree phenology

Fingerprint

Dive into the research topics of 'Will seasonally dry tropical forests be sensitive or resistant to future changes in rainfall regimes?'. Together they form a unique fingerprint.

Cite this