Wilcoxon-type generalized Bayesian information criterion

Lan Wang

Research output: Contribution to journalArticlepeer-review

17 Scopus citations


We develop a generalized Bayesian information criterion for regression model selection. The new criterion relaxes the usually strong distributional assumption associated with Schwarz's bic by adopting a Wilcoxon-type dispersion function and appropriately adjusting the penalty term. We establish that the Wilcoxon-type generalized bic preserves the consistency of Schwarz's bic without the need to assume a parametric likelihood. We also show that it outperforms Schwarz's bic with heavier-tailed data in the sense that asymptotically it can yield substantially smaller L2 risk. On the other hand, when the data are normally distributed, both criteria have similar L2 risk. The new criterion function is convex and can be conveniently computed using existing statistical software. Our proposal provides a flexible yet highly efficient alternative to Schwarz's bic; at the same time, it broadens the scope of Wilcoxon inference, which has played a fundamental role in classical nonparametric analysis.

Original languageEnglish (US)
Pages (from-to)163-173
Number of pages11
Issue number1
StatePublished - Mar 2009

Bibliographical note

Funding Information:
I would like to thank Professor D. M. Titterington, an associate editor, a referee, Edsel Pena and Vance Berger for their valuable and constructive comments. This research was supported by a grant from the U.S. National Science Foundation.


  • Bayesian information criterion
  • Bic
  • Consistency of model selection
  • Heavier-tailed distribution
  • Lrisk
  • Rank
  • Wilcoxon inference


Dive into the research topics of 'Wilcoxon-type generalized Bayesian information criterion'. Together they form a unique fingerprint.

Cite this