Abstract
When making decisions we often face the need to adjudicate between conflicting strategies or courses of action. Our ability to understand the neuronal processes underlying conflict processing is limited on the one hand by the spatiotemporal resolution of functional MRI and, on the other hand, by imperfect cross-species homologies in animal model systems. Here we examine the responses of single neurons and local field potentials in human neurosurgical patients in two prefrontal regions critical to controlled decision-making, the dorsal anterior cingulate cortex (dACC) and dorsolateral prefrontal cortex (dlPFC). While we observe typical modest conflict-related firing rate effects, we find a widespread effect of conflict on spike-phase coupling in the dACC and on driving spike-field coherence in the dlPFC. These results support the hypothesis that a cross-areal rhythmic neuronal coordination is intrinsic to cognitive control in response to conflict, and provide new evidence to support the hypothesis that conflict processing involves modulation of the dlPFC by the dACC.
Original language | English (US) |
---|---|
Pages (from-to) | 1883-1891 |
Number of pages | 9 |
Journal | Nature neuroscience |
Volume | 22 |
Issue number | 11 |
DOIs | |
State | Published - Nov 1 2019 |
Bibliographical note
Funding Information:This work was supported by NIH R01 MH106700 (S.A.S.), NIH K12 NS080223 (S.A.S.), NIH S10 OD018211 (C.A.S.), NIH R01 NS084142 (C.A.S.), NIH R01 DA038615 (B.Y.H.), the Dana Foundation (S.A.S.), the McNair Foundation (S.A.S.), and a Young Investigator grant from the Brain & Behavior Research Foundation (E.H.S). Special thanks to C. Casadei, D. K. Peprah, and T. G. Dyster, all at Columbia University Medical Center, for coordination and data collection efforts.
Publisher Copyright:
© 2019, The Author(s), under exclusive licence to Springer Nature America, Inc.