Wide-range continuous tuning of the thermal conductivity of La0.5Sr0.5CoO3-δ films via room-temperature ion-gel gating

Yingying Zhang, William m. Postiglione, Rui Xie, Chi Zhang, Hao Zhou, Vipul Chaturvedi, Kei Heltemes, Hua Zhou, Tianli Feng, Chris Leighton, Xiaojia Wang

Research output: Contribution to journalArticlepeer-review

12 Scopus citations

Abstract

Solid-state control of the thermal conductivity of materials is of exceptional interest for novel devices such as thermal diodes and switches. Here, we demonstrate the ability to continuously tune the thermal conductivity of nanoscale films of La0.5Sr0.5CoO3-δ (LSCO) by a factor of over 5, via a room-temperature electrolyte-gate-induced non-volatile topotactic phase transformation from perovskite (with δ ≈ 0.1) to an oxygen-vacancy-ordered brownmillerite phase (with δ = 0.5), accompanied by a metal-insulator transition. Combining time-domain thermoreflectance and electronic transport measurements, model analyses based on molecular dynamics and Boltzmann transport equation, and structural characterization by X-ray diffraction, we uncover and deconvolve the effects of these transitions on heat carriers, including electrons and lattice vibrations. The wide-range continuous tunability of LSCO thermal conductivity enabled by low-voltage (below 4 V) room-temperature electrolyte gating opens the door to non-volatile dynamic control of thermal transport in perovskite-based functional materials, for thermal regulation and management in device applications.

Original languageEnglish (US)
Article number2626
Pages (from-to)2626
Number of pages1
JournalNature communications
Volume14
Issue number1
DOIs
StatePublished - Dec 2023

Bibliographical note

Publisher Copyright:
© 2023, The Author(s).

MRSEC Support

  • Primary

PubMed: MeSH publication types

  • Journal Article

Fingerprint

Dive into the research topics of 'Wide-range continuous tuning of the thermal conductivity of La0.5Sr0.5CoO3-δ films via room-temperature ion-gel gating'. Together they form a unique fingerprint.

Cite this