TY - JOUR

T1 - Why the high-frequency inverse scattering by topological sensitivity may work

AU - Guzina, Bojan B

AU - Pourahmadian, Fatemeh

N1 - Publisher Copyright:
© 2015 The Author(s) Published by the Royal Society. All rights reserved.
Copyright:
Copyright 2017 Elsevier B.V., All rights reserved.

PY - 2015/7/8

Y1 - 2015/7/8

N2 - This study deciphers the topological sensitivity (TS) as a tool for the reconstruction and characterization of impenetrable anomalies in the high-frequency regime. It is assumed that the anomaly is simply connected and convex, and that the measurements of the scattered field are of the far-field type. In this setting, the formula for TS - which quantifies the perturbation of a cost functional due to a point-like impenetrable scatterer - is expressed as a pair of nested surface integrals: one taken over the boundary of a hidden obstacle, and the other over the measurement surface. Using multipole expansion, the latter integral is reduced to a set of antilinear forms featuring Green's function and its gradient. The remaining expression is distilled by evaluating the scattered field on the surface of an obstacle via Kirchhoff approximation, and pursuing an asymptotic expansion of the resulting Fourier integral. In this way, the TS is found to survive upon three asymptotic lynchpins, namely (i) the near-boundary approximation for sampling points close to the 'exposed' surface of an obstacle; (ii) uniform expansions synthesizing the diffraction catastrophes for sampling points near caustic surfaces, lines and points; and (iii) stationary phase approximation. Within the framework of catastrophe theory, it is shown that, in the case of the full source aperture, the TS is asymptotically dominated by the (explicit) near-boundary term - which explains the previously reported reconstruction capabilities of this class of indicator functionals. The analysis further shows that, when the (Dirichlet or Neumann) character of an anomaly is unknown beforehand, the latter can be effectively exposed by assuming point-like Dirichlet perturbation and considering the sign of the leading term inside the reconstruction.

AB - This study deciphers the topological sensitivity (TS) as a tool for the reconstruction and characterization of impenetrable anomalies in the high-frequency regime. It is assumed that the anomaly is simply connected and convex, and that the measurements of the scattered field are of the far-field type. In this setting, the formula for TS - which quantifies the perturbation of a cost functional due to a point-like impenetrable scatterer - is expressed as a pair of nested surface integrals: one taken over the boundary of a hidden obstacle, and the other over the measurement surface. Using multipole expansion, the latter integral is reduced to a set of antilinear forms featuring Green's function and its gradient. The remaining expression is distilled by evaluating the scattered field on the surface of an obstacle via Kirchhoff approximation, and pursuing an asymptotic expansion of the resulting Fourier integral. In this way, the TS is found to survive upon three asymptotic lynchpins, namely (i) the near-boundary approximation for sampling points close to the 'exposed' surface of an obstacle; (ii) uniform expansions synthesizing the diffraction catastrophes for sampling points near caustic surfaces, lines and points; and (iii) stationary phase approximation. Within the framework of catastrophe theory, it is shown that, in the case of the full source aperture, the TS is asymptotically dominated by the (explicit) near-boundary term - which explains the previously reported reconstruction capabilities of this class of indicator functionals. The analysis further shows that, when the (Dirichlet or Neumann) character of an anomaly is unknown beforehand, the latter can be effectively exposed by assuming point-like Dirichlet perturbation and considering the sign of the leading term inside the reconstruction.

KW - Diffraction catastrophe

KW - Inverse scattering

KW - Topological sensitivity

UR - http://www.scopus.com/inward/record.url?scp=84937112037&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84937112037&partnerID=8YFLogxK

U2 - 10.1098/rspa.2015.0187

DO - 10.1098/rspa.2015.0187

M3 - Article

C2 - 26345086

AN - SCOPUS:84937112037

VL - 471

JO - Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences

JF - Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences

SN - 0080-4630

IS - 2179

M1 - 20150187

ER -