Abstract
Hyperplane arrangements dissect ℝn into connected components called chambers, and a well-known theorem of Zaslavsky counts chambers as a sum of nonnegative integers called Whitney numbers of the first kind. His theorem generalizes to count chambers within any cone defined as the intersection of a collection of halfspaces from the arrangement, leading to a notion of Whitney numbers for each cone. This paper focuses on cones within the braid arrangement, consisting of the reflecting hyperplanes xi = xj inside ℝn for the symmetric group, thought of as the type An− 1 reflection group. Here, cones correspond to posets,chambers within the cone correspond to linear extensions of the poset,the Whitney numbers of the cone interestingly refine the number of linear extensions of the poset. We interpret this refinement for all posets as counting linear extensions according to a statistic that generalizes the number of left-to-right maxima of a permutation. When the poset is a disjoint union of chains, we interpret this refinement differently, using Foata’s theory of cycle decomposition for multiset permutations, leading to a simple generating function compiling these Whitney numbers.
Original language | English (US) |
---|---|
Pages (from-to) | 283-322 |
Number of pages | 40 |
Journal | Order |
Volume | 38 |
Issue number | 2 |
DOIs | |
State | Published - Jul 2021 |
Bibliographical note
Funding Information:The authors gratefully acknowledge Dennis Stanton for conversations about MacMahon?s Master Theorem, as well as Anders Bj?rner, Jesus DeLoera, Theo Douvropoulos, Michael Falk, Ira Gessel, Benjamin Steinberg, Volkmar Welker, Chi-Ho Yuen for enlightening discussions and references. They thank Philip Zhang for asking them questions about real-rootedness at the 2019 Mid-Atlantic Algebra, Geometry, and Combinatorics Workshop. Finally, the authors thank an anonymous referee for helpful comments.
Publisher Copyright:
© 2021, Springer Nature B.V.
Keywords
- Arrangement
- Catalan
- Cone
- Foata
- Hyperplane
- Multiset
- Permutation
- Poset
- Stirling
- Whitney