Weyl group multiple Dirichlet series, Eisenstein series and crystal bases

Ben Brubaker, Daniel Bump, Solomon Friedberg

Research output: Contribution to journalArticlepeer-review

46 Scopus citations


We show that the Whittaker coefficients of Borel Eisenstein series on the metaplectic covers of GLr+1 can be described as multiple Dirichlet series in r complex variables, whose coefficients are computed by attaching a number-theoretic quantity (a product of Gauss sums) to each vertex in a crystal graph. These Gauss sums depend on "string data" previously introduced in work of Lusztig, Berenstein and Zelevinsky, and Littelmann. These data are the lengths of segments in a path from the given vertex to the vertex of lowest weight, depending on a factorization of the long Weyl group element into simple reflections. The coefficients may also be described as sums over strict Gelfand-Tsetlin patterns. The description is uniform in the degree of the metaplectic cover.

Original languageEnglish (US)
Pages (from-to)1081-1120
Number of pages40
JournalAnnals of Mathematics
Issue number2
StatePublished - Mar 2011


Dive into the research topics of 'Weyl group multiple Dirichlet series, Eisenstein series and crystal bases'. Together they form a unique fingerprint.

Cite this