Wave functions and properties of massive states in three-dimensional supersymmetric Yang-Mills theory

John R. Hiller, Uwe Trittmann

Research output: Contribution to journalArticlepeer-review

21 Scopus citations

Abstract

We apply supersymmetric discrete light-cone quantization (SDLCQ) to the study of supersymmetric Yang-Mills theory on (Formula presented) One of the compact directions is chosen to be lightlike and the other to be spacelike. Since the SDLCQ regularization explicitly preserves supersymmetry, this theory is totally finite, and thus we can solve for bound-state wave functions and masses numerically without renormalizing. We present an overview of all the massive states of this theory, and we see that the spectrum divides into two distinct and disjoint bands. In one band the SDLCQ approximation is valid only up to intermediate coupling. There we find a well defined and well behaved set of states, and we present a detailed analysis of these states and their properties. In the other band, which contains a completely different set of states, we present a much more limited analysis for strong coupling only. We find that, while these states have a well defined spectrum, their masses grow with the transverse momentum cutoff. We present an overview of these states and their properties.

Original languageEnglish (US)
Article number105027
Number of pages1
JournalPhysical Review D
Volume64
Issue number10
DOIs
StatePublished - Oct 29 2001

Fingerprint

Dive into the research topics of 'Wave functions and properties of massive states in three-dimensional supersymmetric Yang-Mills theory'. Together they form a unique fingerprint.

Cite this