Warming increased bark beetle-induced tree mortality by 30% during an extreme drought in California

Zachary J. Robbins, Chonggang Xu, Brian H. Aukema, Polly C. Buotte, Rutuja Chitra-Tarak, Christopher J. Fettig, Michael L. Goulden, Devin W. Goodsman, Alexander D. Hall, Charles D. Koven, Lara M. Kueppers, Gavin D. Madakumbura, Leif A. Mortenson, James A. Powell, Robert M. Scheller

Research output: Contribution to journalArticlepeer-review

39 Scopus citations

Abstract

Quantifying the responses of forest disturbances to climate warming is critical to our understanding of carbon cycles and energy balances of the Earth system. The impact of warming on bark beetle outbreaks is complex as multiple drivers of these events may respond differently to warming. Using a novel model of bark beetle biology and host tree interactions, we assessed how contemporary warming affected western pine beetle (Dendroctonus brevicomis) populations and mortality of its host, ponderosa pine (Pinus ponderosa), during an extreme drought in the Sierra Nevada, California, United States. When compared with the field data, our model captured the western pine beetle flight timing and rates of ponderosa pine mortality observed during the drought. In assessing the influence of temperature on western pine beetles, we found that contemporary warming increased the development rate of the western pine beetle and decreased the overwinter mortality rate of western pine beetle larvae leading to increased population growth during periods of lowered tree defense. We attribute a 29.9% (95% CI: 29.4%–30.2%) increase in ponderosa pine mortality during drought directly to increases in western pine beetle voltinism (i.e., associated with increased development rates of western pine beetle) and, to a much lesser extent, reductions in overwintering mortality. These findings, along with other studies, suggest each degree (°C) increase in temperature may have increased the number of ponderosa pine killed by upwards of 35%–40% °C−1 if the effects of compromised tree defenses (15%–20%) and increased western pine beetle populations (20%) are additive. Due to the warming ability to considerably increase mortality through the mechanism of bark beetle populations, models need to consider climate's influence on both host tree stress and the bark beetle population dynamics when determining future levels of tree mortality.

Original languageEnglish (US)
Pages (from-to)509-523
Number of pages15
JournalGlobal change biology
Volume28
Issue number2
DOIs
StatePublished - Jan 2022

Bibliographical note

Funding Information:
UC National Laboratory Fees Research Program (Z.R., C.X., L.K., P.B., A.H.) (). Support from McIntire‐Stennis project MIN‐17‐095 (B.A.). Grants from the Pacific Southwest Research Station Climate Change Competitive Grant Program (C.F.) (PSW–2016–03, PSW–2017–02). NCSU Chancellor’s Faculty Excellence Program (Z.R., R.S.). LA‐UR‐20‐30376

Publisher Copyright:
© 2021 John Wiley & Sons Ltd

Keywords

  • bark beetles
  • climate impacts
  • drought
  • forest dynamics
  • modeling
  • tree mortality

PubMed: MeSH publication types

  • Journal Article

Fingerprint

Dive into the research topics of 'Warming increased bark beetle-induced tree mortality by 30% during an extreme drought in California'. Together they form a unique fingerprint.

Cite this