Virulence associations in oat crown rust

K. J. Leonard, Y. Anikster, J. Manisterski

Research output: Contribution to journalArticlepeer-review

18 Scopus citations

Abstract

Isolates of Puccinia coronata obtained from natural populations of Avena sterilis in Israel, winter oat (A. sativa) cultivars in Texas, and spring oat cultivars in the Northern Plains states of Minnesota, North Dakota, and South Dakota were analyzed for significance of pairwise virulence associations. Isolates from all three regions were tested on 25 oat lines with single P. coronata (Pc) genes for crown rust resistance from A. sterilis and one line with a Pc gene from A. sativa. Isolates from Israel were tested also on 11 Iowa backcross lines with undesignated crown rust resistance genes from A. sterilis. Four associated virulence groups were identified from significant positive virulence associations that were consistent across all three regions. Group 38 included virulence to Pc-38, Pc-39, Pc-55, Pc-63, and Pc-71; group 45 included virulence to Pc-45, Pc-46, Pc-48, Pc-52, Pc-54, and Pc-57; group 58 included virulence to Pc-35, Pc-40, Pc-58, and Pc-59; and group 61 included virulence to Pc-36, Pc-51, Pc-56, Pc-60, and Pc-61. Virulence to Pc-70 showed the strongest association to virulences in group 38 but also showed significant association with virulence to Pc-45, Pc-35, and Pc-58. Virulences in group 61 were consistently negatively associated with virulences in group 38 in each region. In Israel, virulences to five of the Iowa lines showed positive associations to virulences in group 61 and negative associations to virulences in groups 38 and 45. Close similarity of reactions of nearly all isolates to Pc-39, Pc-55, and Pc-71 suggest that these genes may be identical or nearly identical alleles.

Original languageEnglish (US)
Pages (from-to)53-61
Number of pages9
JournalPhytopathology
Volume95
Issue number1
DOIs
StatePublished - Jan 2005

Keywords

  • Linkage disequilibrium

Fingerprint Dive into the research topics of 'Virulence associations in oat crown rust'. Together they form a unique fingerprint.

Cite this