TY - JOUR
T1 - Virulence and molecular diversity in Cochliobolus sativus
AU - Zhong, S.
AU - Steffenson, B. J.
N1 - Copyright:
Copyright 2017 Elsevier B.V., All rights reserved.
PY - 2001
Y1 - 2001
N2 - Spot blotch, caused by the fungal pathogen Cochliobolus sativus, is an important disease of barley in many production areas of the world. To assess genetic diversity in this pathogen, a worldwide collection of C. sativus isolates was evaluated for virulence on barley and DNA polymorprism. Three pathotypes (0, 1, and 2) were identified among the 22 isolates tested in this study and the 36 isolates characterized previously on three barley differentials (ND5883, Bowman, and NDB112) that differ in their resistance to C. sativus. Pathotype 2, which exhibits high virulence on cv. Bowman, was only found in North Dakota, whereas the other two pathotypes occurred in many other regions of the world. Genetic diversity of the 58 C. sativus isolates, together with isolates of three related pathogenic Cochliobolus spp. (C. heterostrophus, C. carbonum, and C. victoriae) was analyzed using amplified fragment length polymorphism (AFLP) markers. A total of 577 polymorphic AFLP markers were recorded among the 70 isolates of the four Cochliobolus spp. using eight primer combinations. Cluster analysis revealed distinct groups corresponding to the four different species, except in one case where race 0 of C. carbonum was placed in an outgroup that may belong to a different species. In C. sativus, 95 polymorphic AFLP markers were detected with the eight primer pairs used, and each isolate exhibited a unique AFLP pattern. Allelic diversity in the pathotype 2 group was lower (0.10) than in the pathotype 0 (0.23) and pathotype 1 (0.15) groups, indicating that pathotype 2 may have arisen more recently. Cluster analysis did not reveal a close correlation between pathotypes and AFLP groups, although two AFLP markers unique to pathotype 2 isolates were identified. This low correlation suggests that genetic exchange may have occurred through parasexual recombination in the fungal population. Some isolates collected from different regions of the world were clustered into the same AFLP group, suggesting that migration of the fungal pathogen around these regions has occurred.
AB - Spot blotch, caused by the fungal pathogen Cochliobolus sativus, is an important disease of barley in many production areas of the world. To assess genetic diversity in this pathogen, a worldwide collection of C. sativus isolates was evaluated for virulence on barley and DNA polymorprism. Three pathotypes (0, 1, and 2) were identified among the 22 isolates tested in this study and the 36 isolates characterized previously on three barley differentials (ND5883, Bowman, and NDB112) that differ in their resistance to C. sativus. Pathotype 2, which exhibits high virulence on cv. Bowman, was only found in North Dakota, whereas the other two pathotypes occurred in many other regions of the world. Genetic diversity of the 58 C. sativus isolates, together with isolates of three related pathogenic Cochliobolus spp. (C. heterostrophus, C. carbonum, and C. victoriae) was analyzed using amplified fragment length polymorphism (AFLP) markers. A total of 577 polymorphic AFLP markers were recorded among the 70 isolates of the four Cochliobolus spp. using eight primer combinations. Cluster analysis revealed distinct groups corresponding to the four different species, except in one case where race 0 of C. carbonum was placed in an outgroup that may belong to a different species. In C. sativus, 95 polymorphic AFLP markers were detected with the eight primer pairs used, and each isolate exhibited a unique AFLP pattern. Allelic diversity in the pathotype 2 group was lower (0.10) than in the pathotype 0 (0.23) and pathotype 1 (0.15) groups, indicating that pathotype 2 may have arisen more recently. Cluster analysis did not reveal a close correlation between pathotypes and AFLP groups, although two AFLP markers unique to pathotype 2 isolates were identified. This low correlation suggests that genetic exchange may have occurred through parasexual recombination in the fungal population. Some isolates collected from different regions of the world were clustered into the same AFLP group, suggesting that migration of the fungal pathogen around these regions has occurred.
KW - DNA markers
KW - Hordeum vulgare
UR - http://www.scopus.com/inward/record.url?scp=0035011555&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0035011555&partnerID=8YFLogxK
U2 - 10.1094/PHYTO.2001.91.5.469
DO - 10.1094/PHYTO.2001.91.5.469
M3 - Article
C2 - 18943591
AN - SCOPUS:0035011555
SN - 0031-949X
VL - 91
SP - 469
EP - 476
JO - Phytopathology
JF - Phytopathology
IS - 5
ER -