Vibration damping through the use of materials with memory

Roger Fosdick, Yohannes Ketema, Jang Horng Yu

Research output: Contribution to journalArticlepeer-review

20 Scopus citations


We study the dynamics of a lumped mass linear oscillator that is damped through the use of a material with memory in which the internal dissipative forces depend not only on current but also on previous deformations. This effective memory is governed by two parameters: the relaxation modulus G0, and relaxation time γ, which also govern the vibration-damping properties of the material. Conditions for optimal damping in the unforced case corresponding to critical damping of a linear oscillator with viscous damping are derived, and the response of the oscillator in the case of sinusoidal excitation is studied. When the relaxation time is small the history type damping is modeled approximately by the action of a classical viscous damper with small viscosity. However, when the relaxation time is sufficiently large, this damping mechanism adds to the system a new higher resonance frequency that depends on G0 and γ. Since the oscillator is active over a wide range of frequencies, it has potential applications to the development of adaptive damping devices.

Original languageEnglish (US)
Pages (from-to)403-420
Number of pages18
JournalInternational Journal of Solids and Structures
Issue number5-6
StatePublished - Feb 1998

Bibliographical note

Funding Information:
t This work was partially supported by the National Science Foundation, Grant No. DMS-9531925.

Copyright 2018 Elsevier B.V., All rights reserved.


Dive into the research topics of 'Vibration damping through the use of materials with memory'. Together they form a unique fingerprint.

Cite this