TY - JOUR
T1 - Vertex magic total labelings of 2-regular graphs
AU - Cichacz, Sylwia
AU - Froncek, Dalibor
AU - Singgih, Inne
N1 - Publisher Copyright:
© 2016 Elsevier Ltd
PY - 2017/1/6
Y1 - 2017/1/6
N2 - A vertex magic total (VMT) labeling of a graph G = ( V, E ) is a bijection from the set of vertices and edges to the set of integers defined by λ : V ∪ E → { 1, 2, …, | V | + | E | } so that for every x ∈ V, w ( x ) = λ ( x ) + ∑ x y ∈ E λ ( x y ) = k, for some integer k. A VMT labeling is said to be a super VMT labeling if the vertices are labeled with the smallest possible integers, 1, 2, …, | V |. In this paper we introduce a new method to expand some known VMT labelings of 2-regular graphs.
AB - A vertex magic total (VMT) labeling of a graph G = ( V, E ) is a bijection from the set of vertices and edges to the set of integers defined by λ : V ∪ E → { 1, 2, …, | V | + | E | } so that for every x ∈ V, w ( x ) = λ ( x ) + ∑ x y ∈ E λ ( x y ) = k, for some integer k. A VMT labeling is said to be a super VMT labeling if the vertices are labeled with the smallest possible integers, 1, 2, …, | V |. In this paper we introduce a new method to expand some known VMT labelings of 2-regular graphs.
KW - Magic-type labelings
KW - Vertex magic total labelings
UR - http://www.scopus.com/inward/record.url?scp=84982684398&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84982684398&partnerID=8YFLogxK
U2 - 10.1016/j.disc.2016.06.022
DO - 10.1016/j.disc.2016.06.022
M3 - Article
AN - SCOPUS:84982684398
SN - 0012-365X
VL - 340
SP - 3117
EP - 3124
JO - Discrete Mathematics
JF - Discrete Mathematics
IS - 1
ER -