Variable character of O - O and M - O bonding in side-on (η2) 1:1 metal complexes of O2

Christopher J. Cramer, William B. Tolman, Klaus H. Theopold, Arnold L. Rheingold

Research output: Contribution to journalArticlepeer-review

314 Scopus citations

Abstract

The structures and the O - O and M - O bonding characters of a series of reported side-on (η2) 1:1 metal complexes of O2 are analyzed by using density functional theory calculations. Comparison of the calculated and experimental systems with respect to O - O bond distance, O - O stretching frequency, and O - O and M - O bond orders provides new insights into subtle influences relevant to O2 activation processes in biology and catalysis. The degree of charge transfer from the generally electronrich metals to the dioxygen fragment is found to be variable, such that there are species well described as superoxides, others well described as peroxides, and several cases having intermediate character. Increased charge transfer to dioxygen takes place via overlap of the metal dxy orbital with the in-plane π* orbital of O2 and results in increased M - O bond orders and decreased O - O bond orders. Comparison of theory and experiment over the full range of compounds studied suggests that reevaluation of the O - O bond lengths determined from certain x-ray crystal structures is warranted; in one instance, an x-ray crystal structure redetermination was performed at low temperature, confirming the theoretical prediction. Librational motion of the coordinated 02 is identified as a basis for significant underestimation of the O - O distance at high temperature.

Original languageEnglish (US)
Pages (from-to)3635-3640
Number of pages6
JournalProceedings of the National Academy of Sciences of the United States of America
Volume100
Issue number7
DOIs
StatePublished - Apr 1 2003

Fingerprint

Dive into the research topics of 'Variable character of O - O and M - O bonding in side-on (η2) 1:1 metal complexes of O2'. Together they form a unique fingerprint.

Cite this