TY - JOUR
T1 - Validity and reliability of dual-energy X-ray absorptiometry for the assessment of abdominal adiposity
AU - Glickman, Scott G.
AU - Marn, Charles S.
AU - Supiano, Mark A.
AU - Dengel, Donald R.
N1 - Copyright:
Copyright 2008 Elsevier B.V., All rights reserved.
PY - 2004/8
Y1 - 2004/8
N2 - A number of methods exist for the estimation of abdominal obesity, ranging from waist-to-hip ratio to computed tomography (CT). Although dual-energy X-ray absorptiometry (DXA) was originally used to measure bone density and total body composition, recent improvements in software allow it to determine abdominal fat mass. Sixty-five men and women aged 18-72 yr participated in a series of studies to examine the validity and reliability of the DXA to accurately measure abdominal fat. Total body fat and abdominal regional fat were measured by DXA using a Lunar DPX-IQ. Multislice CT scans were performed between L1 and L4 vertebral bodies (region of interest) using a Picker PQ5000 CT scanner, and volumetric analyses were carried out on a Voxel Q workstation. Both abdominal total tissue mass (P = 0.02) and abdominal fat mass (P < 0.0001) in the L1-L4 region of interest were significantly lower as measured by DXA compared with multislice CT. However, Bland-Altman analysis demonstrated good concordance between DXA and CT for abdominal total tissue mass (i.e., limits of agreement = -1.56-2.54 kg) and fat mass (i.e., limits of agreement = -0.40-1.94 kg). DXA also showed excellent reliability among three different operators to determine total, fat, and lean body mass in the L1-L4 region of interest (intraclass correlations, R = 0.94, 0.97, and 0.89, respectively). In conclusion, the DXA L1-L4 region of interest compared with CT proved to be both reliable and accurate method to determine abdominal obesity.
AB - A number of methods exist for the estimation of abdominal obesity, ranging from waist-to-hip ratio to computed tomography (CT). Although dual-energy X-ray absorptiometry (DXA) was originally used to measure bone density and total body composition, recent improvements in software allow it to determine abdominal fat mass. Sixty-five men and women aged 18-72 yr participated in a series of studies to examine the validity and reliability of the DXA to accurately measure abdominal fat. Total body fat and abdominal regional fat were measured by DXA using a Lunar DPX-IQ. Multislice CT scans were performed between L1 and L4 vertebral bodies (region of interest) using a Picker PQ5000 CT scanner, and volumetric analyses were carried out on a Voxel Q workstation. Both abdominal total tissue mass (P = 0.02) and abdominal fat mass (P < 0.0001) in the L1-L4 region of interest were significantly lower as measured by DXA compared with multislice CT. However, Bland-Altman analysis demonstrated good concordance between DXA and CT for abdominal total tissue mass (i.e., limits of agreement = -1.56-2.54 kg) and fat mass (i.e., limits of agreement = -0.40-1.94 kg). DXA also showed excellent reliability among three different operators to determine total, fat, and lean body mass in the L1-L4 region of interest (intraclass correlations, R = 0.94, 0.97, and 0.89, respectively). In conclusion, the DXA L1-L4 region of interest compared with CT proved to be both reliable and accurate method to determine abdominal obesity.
KW - Body fat
KW - Computed tomography
KW - Regional composition
UR - http://www.scopus.com/inward/record.url?scp=3242705805&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=3242705805&partnerID=8YFLogxK
U2 - 10.1152/japplphysiol.01234.2003
DO - 10.1152/japplphysiol.01234.2003
M3 - Article
C2 - 15075304
AN - SCOPUS:3242705805
VL - 97
SP - 509
EP - 514
JO - Journal of Applied Physiology
JF - Journal of Applied Physiology
SN - 8750-7587
IS - 2
ER -