Validation and optimization of adiabatic T and T for quantitative imaging of articular cartilage at 3 T

Victor Casula, Joonas Autio, Mikko J. Nissi, Edward J. Auerbach, Jutta Ellermann, Eveliina Lammentausta, Miika T. Nieminen

Research output: Contribution to journalArticlepeer-review

9 Scopus citations

Abstract

Purpose: The aim of the present work was to validate and optimize adiabatic T and T mapping for in vivo measurements of articular cartilage at 3 Tesla (T). Methods: Phantom and in vivo experiments were systematically performed on a 3T clinical system to evaluate the sequences using hyperbolic secant HS1 and HS4 pulses. R and R relaxation rates were studied as a function of agarose and chondroitin sulfate concentration and pulse duration. Optimal in vivo protocol was determined by imaging the articular cartilage of two volunteers and varying the sequence parameters, and successively applied in eight additional subjects. Reproducibility was assessed in phantoms and in vivo. Results: Relaxation rates depended on agarose and chondroitin sulfate concentration. The sequences were able to generate relaxation time maps with pulse lengths of 8 and 6 ms for HS1 and HS4, respectively. In vivo findings were in good agreement with the phantoms. The implemented adiabatic T and T sequences demonstrated regional variation in relaxation time maps of femorotibial cartilage. Reproducibility in phantoms and in vivo was good to excellent for both adiabatic T and T. Conclusions: The findings indicate that sequences are suitable for quantitative in vivo assessment of articular cartilage at 3 T. Magn Reson Med 77:1265–1275, 2017.

Original languageEnglish (US)
Pages (from-to)1265-1275
Number of pages11
JournalMagnetic resonance in medicine
Volume77
Issue number3
DOIs
StatePublished - Mar 1 2017

Bibliographical note

Funding Information:
The Center for Magnetic Resonance Research, University of Minnesota, is gratefully acknowledged for providing the adiabatic T1? and T2? sequences. The authors would like to thank Silvia Mangia and Shalom Michaeli for constructive discussions, Anna-Leena Manninen and Abdul Wahed Kajabi for their advice and assistance with phantom preparation, and Ute Goerke for the original Siemens implementation of the adiabatic Tsequence. This work was supported by Academy of Finland (grants 260321, 285909, and 293970).

Keywords

  • T1ρ
  • T2ρ
  • adiabatic
  • articular cartilage
  • in vivo
  • relaxation
  • spin lock

Fingerprint Dive into the research topics of 'Validation and optimization of adiabatic T<sub>1ρ</sub> and T<sub>2ρ</sub> for quantitative imaging of articular cartilage at 3 T'. Together they form a unique fingerprint.

Cite this