Utilizing the planarian voltage-gated ion channel transcriptome to resolve a role for a Ca2 + channel in neuromuscular function and regeneration

John Chan, Dan Zhang, Xiaolong Liu, Magdalena Zarowiecki, Matthew Berriman, Jonathan S Marchant

Research output: Contribution to journalArticlepeer-review

9 Scopus citations

Abstract

The robust regenerative capacity of planarian flatworms depends on the orchestration of signaling events from early wounding responses through the stem cell enacted differentiative outcomes that restore appropriate tissue types. Acute signaling events in excitable cells play an important role in determining regenerative polarity, rationalized by the discovery that sub-epidermal muscle cells express critical patterning genes known to control regenerative outcomes. These data imply a dual conductive (neuromuscular signaling) and instructive (anterior-posterior patterning) role for Ca2 + signaling in planarian regeneration. Here, to facilitate study of acute signaling events in the excitable cell niche, we provide a de novo transcriptome assembly from the planarian Dugesia japonica allowing characterization of the diverse ionotropic portfolio of this model organism. We demonstrate the utility of this resource by proceeding to characterize the individual role of each of the planarian voltage-operated Ca2 + channels during regeneration, and demonstrate that knockdown of a specific voltage operated Ca2 + channel (Cav1B) that impairs muscle function uniquely creates an environment permissive for anteriorization. Provision of the full transcriptomic dataset should facilitate further investigations of molecules within the planarian voltage-gated channel portfolio to explore the role of excitable cell physiology on regenerative outcomes. This article is part of a Special Issue entitled: ECS Meeting edited by Claus Heizmann, Joachim Krebs and Jacques Haiech.

Original languageEnglish (US)
Pages (from-to)1036-1045
Number of pages10
JournalBiochimica et Biophysica Acta - Molecular Cell Research
Volume1864
Issue number6
DOIs
StatePublished - Jun 1 2017

Bibliographical note

Publisher Copyright:
© 2016 Elsevier B.V.

Keywords

  • Neuromuscular signaling
  • Regeneration
  • Transcriptome
  • Voltage-operated Ca channels

Fingerprint

Dive into the research topics of 'Utilizing the planarian voltage-gated ion channel transcriptome to resolve a role for a Ca<sup>2 +</sup> channel in neuromuscular function and regeneration'. Together they form a unique fingerprint.

Cite this