Utility of Downstream Biomarkers to Assess and Optimize Intranasal Delivery of Oxytocin

Megan Dubois, Angela Tseng, Sunday M. Francis, Ann F. Haynos, Carol B. Peterson, Suma Jacob

Research output: Contribution to journalArticlepeer-review

1 Scopus citations

Abstract

Oxytocin (OT), a mammalian neurohormone associated with social cognition and behavior, can be administered in its synthetic form intranasally (IN) and impact brain chemistry and behavior. IN-OT shows potential as a noninvasive intervention for disorders characterized by social challenges, e.g., autism spectrum disorder (ASD) and anorexia nervosa (AN). To evaluate IN-OT’s efficacy, we must quantify OT uptake, availability, and clearance; thus, we assessed OT levels in urine (uOT) before and after participants (26 ASD, 7 AN, and 7 healthy controls) received 40 IU IN-OT or placebo across two sessions using double-blind, placebo-controlled crossover designs. We also measured uOT and plasma (pOT) levels in a subset of participants to compare the two sampling methods. We found significantly higher uOT and pOT following intranasal delivery of active compound versus placebo, but analyses yielded larger effect sizes and more clearly differentiated pre–post-OT levels for uOT than pOT. Further, we applied a two-step cluster (TSC), blinded backward-chaining approach to determine whether active/placebo groups could be identified by uOT and pOT change alone; uOT levels may serve as an accessible and accurate systemic biomarker for OT dose–response. Future studies will explore whether uOT levels correlate directly with behavioral targets to improve dosing for therapeutic goals.

Original languageEnglish (US)
Article number1178
JournalPharmaceutics
Volume14
Issue number6
DOIs
StatePublished - Jun 2022

Bibliographical note

Funding Information:
Funding: This work was supported by NIMH K23MH082121 and K23MH112867, LEND-HSRA T73MC12835, Minnesota Partnership for Biotechnology and Medical Genomics, and Eating Disorders Research Grant (00063616) by the Klarman Family Foundation.

Publisher Copyright:
© 2022 by the authors. Licensee MDPI, Basel, Switzerland.

Keywords

  • anorexia
  • autism
  • cluster analysis
  • drug delivery
  • intranasal
  • oxytocin
  • plasma
  • urine

Fingerprint

Dive into the research topics of 'Utility of Downstream Biomarkers to Assess and Optimize Intranasal Delivery of Oxytocin'. Together they form a unique fingerprint.

Cite this