Using large-scale tropical dry forest restoration to test successional theory

Leland K. Werden, Erick Calderón-Morales, Pedro Alvarado J., Milena Gutiérrez L., Derek A. Nedveck, Jennifer S. Powers

Research output: Contribution to journalArticlepeer-review

9 Scopus citations


Microclimatic conditions change dramatically as forests age and impose strong filters on community assembly during succession. Light availability is the most limiting environmental factor in tropical wet forest succession; by contrast, water availability is predicted to strongly influence tropical dry forest (TDF) successional dynamics. While mechanisms underlying TDF successional trajectories are not well understood, observational studies have demonstrated that TDF communities transition from being dominated by species with conservative traits to species with acquisitive traits, the opposite of tropical wet forest. Determining how functional traits predict TDF tree species’ responses to changing environmental conditions could elucidate mechanisms underlying tree performance during TDF succession. We implemented a 6-ha restoration experiment on a degraded Vertisol in Costa Rica to determine (1) how TDF tree species with different resource-use strategies performed along a successional gradient and (2) how ecophysiological functional traits correlated with tree performance in simulated successional stages. We used two management treatments to simulate distinct successional stages including: clearing all remnant vegetation (early-succession), or interplanting seedlings with no clearing (mid-succession). We crossed these two management treatments (cleared/interplanted) with two species mixes with different resource-use strategies (acquisitive/conservative) to examine their interaction. Overall seedling survival after 2 yr was low, 15.1–26.4% in the four resource-use-strategy × management-treatment combinations, and did not differ between the management treatments or resource-use-strategy groups. However, seedling growth rates were dramatically higher for all species in the cleared treatment (year 1, 69.1% higher; year 2, 143.3% higher) and defined resource-use strategies had some capacity to explain seedling performance. Overall, ecophysiological traits were better predictors of species’ growth and survival than resource-use strategies defined by leaf and stem traits such as specific leaf area. Moreover, ecophysiological traits related to water use had a stronger influence on seedling performance in the cleared, early-successional treatment, indicating that the influence of microclimatic conditions on tree survival and growth shifts predictably during TDF succession. Our findings suggest that ecophysiological traits should be explicitly considered to understand shifts in TDF functional composition during succession and that using these traits to design species mixes could greatly improve TDF restoration outcomes.

Original languageEnglish (US)
Article numbere02116
JournalEcological Applications
Issue number6
StatePublished - Sep 1 2020

Bibliographical note

Funding Information:
We thank the many volunteers who helped to plant the experiment, Daniel Perez A. for collecting seeds, and Roger Blanco from Área de Conservación Guanacaste for facilitating the study. This work was supported by NSF DDIG (1600710) and GRFP (11‐582) and a Garden Club of America Award in Tropical Botany to L. K. Werden, and NSF CAREER (DEB‐1053237) to J. S. Powers Comments from Rebecca Montgomery, Rakan Zahawi, Susan Galatowitsch, Dean Current, and two anonymous reviewers greatly improved this manuscript. .

Publisher Copyright:
© 2020 by the Ecological Society of America


  • Costa Rica
  • abiotic conditions
  • active restoration
  • community assembly
  • degraded Vertisol
  • ecophysiology
  • microclimate
  • plant functional traits
  • resource-use strategies
  • succession


Dive into the research topics of 'Using large-scale tropical dry forest restoration to test successional theory'. Together they form a unique fingerprint.

Cite this