Using clinical notes with time series data for ICU management

Swaraj Khadanga, Karan Aggarwal, Shafiq Joty, Jaideep Srivastava

Research output: Chapter in Book/Report/Conference proceedingConference contribution

17 Scopus citations

Abstract

Monitoring patients in ICU is a challenging and high-cost task. Hence, predicting the condition of patients during their ICU stay can help provide better acute care and plan the hospital's resources. There has been continuous progress in machine learning research for ICU management, and most of this work has focused on using time series signals recorded by ICU instruments. In our work, we show that adding clinical notes as another modality improves the performance of the model for three benchmark tasks: in-hospital mortality prediction, modeling decompensation, and length of stay forecasting that play an important role in ICU management. While the time-series data is measured at regular intervals, doctor notes are charted at irregular times, making it challenging to model them together. We propose a method to model them jointly, achieving considerable improvement across benchmark tasks over baseline time-series model. Our implementation can be found at https://github.com/kaggarwal/ClinicalNotesICU.

Original languageEnglish (US)
Title of host publicationEMNLP-IJCNLP 2019 - 2019 Conference on Empirical Methods in Natural Language Processing and 9th International Joint Conference on Natural Language Processing, Proceedings of the Conference
PublisherAssociation for Computational Linguistics
Pages6432-6437
Number of pages6
ISBN (Electronic)9781950737901
StatePublished - 2019
Event2019 Conference on Empirical Methods in Natural Language Processing and 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019 - Hong Kong, China
Duration: Nov 3 2019Nov 7 2019

Publication series

NameEMNLP-IJCNLP 2019 - 2019 Conference on Empirical Methods in Natural Language Processing and 9th International Joint Conference on Natural Language Processing, Proceedings of the Conference

Conference

Conference2019 Conference on Empirical Methods in Natural Language Processing and 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019
Country/TerritoryChina
CityHong Kong
Period11/3/1911/7/19

Bibliographical note

Publisher Copyright:
© 2019 Association for Computational Linguistics

Fingerprint

Dive into the research topics of 'Using clinical notes with time series data for ICU management'. Together they form a unique fingerprint.

Cite this