Using Baidu search index to monitor and predict newly diagnosed cases of HIV/AIDS, syphilis and gonorrhea in China: Estimates from a vector autoregressive (VAR) model

Ruonan Huang, Ganfeng Luo, Qibin Duan, Lei Zhang, Qingpeng Zhang, Weiming Tang, M. Kumi Smith, Jinghua Li, Huachun Zou

Research output: Contribution to journalArticlepeer-review

7 Scopus citations

Abstract

Objectives Internet search engine data have been widely used to monitor and predict infectious diseases. Existing studies have found correlations between search data and HIV/AIDS epidemics. We aimed to extend the literature through exploring the feasibility of using search data to monitor and predict the number of newly diagnosed cases of HIV/AIDS, syphilis and gonorrhoea in China. Methods This paper used vector autoregressive model to combine the number of newly diagnosed cases with Baidu search index to predict monthly newly diagnosed cases of HIV/AIDS, syphilis and gonorrhoea in China. The procedures included: (1) keywords selection and filtering; (2) construction of composite search index; (3) modelling with training data from January 2011 to October 2016 and calculating the prediction performance with validation data from November 2016 to October 2017. Results The analysis showed that there was a close correlation between the monthly number of newly diagnosed cases and the composite search index (the Spearman's rank correlation coefficients were 0.777 for HIV/AIDS, 0.590 for syphilis and 0.633 for gonorrhoea, p<0.05 for all). The R 2 were all more than 85% and the mean absolute percentage errors were less than 11%, showing the good fitting effect and prediction performance of vector autoregressive model in this field. Conclusions Our study indicated the potential feasibility of using Baidu search data to monitor and predict the number of newly diagnosed cases of HIV/AIDS, syphilis and gonorrhoea in China.

Original languageEnglish (US)
Article numbere036098
JournalBMJ open
Volume10
Issue number3
DOIs
StatePublished - Mar 24 2020

Bibliographical note

Funding Information:
This publication was funded by National Natural Science Foundation of China (81703278, 81803334, 71672163), National Science and Technology Major Project of China (2018ZX10721102), Australian National Health and Medical Research Council Early Career Fellowship (APP1092621), Sanming Project of Medicine in Shenzhen, China (SZSM201811071), China Medical Board (18-301) and A Major Infectious Disease Prevention and Control of the National Science and Technique Major Project (2018ZX10715004).

Publisher Copyright:
© Author(s) (or their employer(s)) 2020. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.

Keywords

  • epidemiology
  • infection control
  • statistics & research methods

Fingerprint

Dive into the research topics of 'Using Baidu search index to monitor and predict newly diagnosed cases of HIV/AIDS, syphilis and gonorrhea in China: Estimates from a vector autoregressive (VAR) model'. Together they form a unique fingerprint.

Cite this