TY - JOUR
T1 - Upstream stimulatory factor (USF) is recruited into a steroid hormone-triggered regulatory circuit by the estrogen-inducible transcription factor δEFI
AU - Dillner, Naomi B.
AU - Sanders, Michel M.
PY - 2002/9/13
Y1 - 2002/9/13
N2 - In the past decade, investigation into steroid hormone signaling has focused on the mechanisms of steroid hormone receptors as they act as signaling molecules and transcription factors in cells. However, the majority of hormone-responsive genes are not directly regulated by hormone receptors. These genes are termed secondary response genes. To explore the molecular mechanisms by which the steroid hormone estrogen regulates secondary response genes, the ovalbumin (Ov) gene was analyzed. Three protein-protein complexes (Chirp-I, -II, -III), which do not contain the estrogen receptor, are induced by estrogen to bind to the 5′-flanking region of the Ov gene. The Chirp-III DNA binding site, which is required for estrogen induction, binds a complex of proteins that contains the estrogen-inducible transcription factor δEF1. Experiments undertaken to identify proteins complexed with δEF1 led to the elucidation of a novel mechanism of action of upstream stimulatory factor-1 (USF-1), which involves its tethering to the Ov gene 5′-flanking region by δEF1. Gel mobility shift assays and co-immunoprecipitation experiments identify USF-1 as a component of Chirp-III. However, USF-1 is not able to bind to the Chirp-III site independently. In addition, USF-1 overexpression is able to induce Ov gene promoter activity in transfection experiments. USF-1 can also potentiate the induction of the Ov gene by the transcription factor δEF1. Moreover, mutating the δEF1 binding sites in the 5′-flanking region of the Ov gene abrogates induction of the gene by USF-1. These data begin to establish a molecular mechanism by which hormone-inducible transcription factors and ubiquitous transcription factors cooperate to regulate estrogen- induced secondary response gene expression.
AB - In the past decade, investigation into steroid hormone signaling has focused on the mechanisms of steroid hormone receptors as they act as signaling molecules and transcription factors in cells. However, the majority of hormone-responsive genes are not directly regulated by hormone receptors. These genes are termed secondary response genes. To explore the molecular mechanisms by which the steroid hormone estrogen regulates secondary response genes, the ovalbumin (Ov) gene was analyzed. Three protein-protein complexes (Chirp-I, -II, -III), which do not contain the estrogen receptor, are induced by estrogen to bind to the 5′-flanking region of the Ov gene. The Chirp-III DNA binding site, which is required for estrogen induction, binds a complex of proteins that contains the estrogen-inducible transcription factor δEF1. Experiments undertaken to identify proteins complexed with δEF1 led to the elucidation of a novel mechanism of action of upstream stimulatory factor-1 (USF-1), which involves its tethering to the Ov gene 5′-flanking region by δEF1. Gel mobility shift assays and co-immunoprecipitation experiments identify USF-1 as a component of Chirp-III. However, USF-1 is not able to bind to the Chirp-III site independently. In addition, USF-1 overexpression is able to induce Ov gene promoter activity in transfection experiments. USF-1 can also potentiate the induction of the Ov gene by the transcription factor δEF1. Moreover, mutating the δEF1 binding sites in the 5′-flanking region of the Ov gene abrogates induction of the gene by USF-1. These data begin to establish a molecular mechanism by which hormone-inducible transcription factors and ubiquitous transcription factors cooperate to regulate estrogen- induced secondary response gene expression.
UR - http://www.scopus.com/inward/record.url?scp=0037072783&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0037072783&partnerID=8YFLogxK
U2 - 10.1074/jbc.M204399200
DO - 10.1074/jbc.M204399200
M3 - Article
C2 - 12107170
AN - SCOPUS:0037072783
SN - 0021-9258
VL - 277
SP - 33890
EP - 33894
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 37
ER -