Unveiling Anomalous Edges and Nominal Connectivity of Attributed Networks

Konstantinos Polyzos, Costas Mavromatis, Vassilis N. Ioannidis, Georgios B. Giannakis

Research output: Chapter in Book/Report/Conference proceedingConference contribution

5 Scopus citations

Abstract

Uncovering anomalies in attributed networks has recently gained popularity due to its importance in unveiling outliers and flagging adversarial behavior in a gamut of data and network science applications including the Internet of Things (IoT), finance, security, to list a few. The present work deals with uncovering anomalous edges in attributed graphs using two distinct formulations with complementary strengths, which can be easily distributed, and hence efficient. The first relies on decomposing the graph data matrix into low rank plus sparse components to markedly improve performance. The second broadens the scope of the first by performing robust recovery of the unperturbed graph, which enhances the anomaly identification performance. The novel methods not only capture anomalous edges linking nodes of different communities, but also spurious connections between any two nodes with different features. Experiments conducted on real and synthetic data corroborate the effectiveness of both methods in the anomaly identification task.

Original languageEnglish (US)
Title of host publicationConference Record of the 54th Asilomar Conference on Signals, Systems and Computers, ACSSC 2020
EditorsMichael B. Matthews
PublisherIEEE Computer Society
Pages726-730
Number of pages5
ISBN (Electronic)9780738131269
DOIs
StatePublished - Nov 1 2020
Event54th Asilomar Conference on Signals, Systems and Computers, ACSSC 2020 - Pacific Grove, United States
Duration: Nov 1 2020Nov 5 2020

Publication series

NameConference Record - Asilomar Conference on Signals, Systems and Computers
Volume2020-November
ISSN (Print)1058-6393

Conference

Conference54th Asilomar Conference on Signals, Systems and Computers, ACSSC 2020
Country/TerritoryUnited States
CityPacific Grove
Period11/1/2011/5/20

Bibliographical note

Publisher Copyright:
© 2020 IEEE.

Keywords

  • Anomaly identification
  • Feature Smoothness
  • Laplacian Recovery
  • Low-Rank and Sparse Decomposition

Fingerprint

Dive into the research topics of 'Unveiling Anomalous Edges and Nominal Connectivity of Attributed Networks'. Together they form a unique fingerprint.

Cite this