Abstract
The pseudogap region of the phase diagram is an important unsolved puzzle in the field of high-transition-temperature (high-Tc) superconductivity, characterized by anomalous physical properties. There are open questions about the number of distinct phases and the possible presence of a quantum-critical point underneath the superconducting dome. The picture has remained unclear because there has not been conclusive evidence for a new type of order. Neutron scattering measurements for YBa2Cu 3O6+δ (YBCO) resulted in contradictory claims of no and weak magnetic order, and the interpretation of muon spin relaxation measurements on YBCO and of circularly polarized photoemission experiments on Bi2Sr2CaCu2O8+δ(refs 12, 13) has been controversial. Here we use polarized neutron diffraction to demonstrate for the model superconductor HgBa2CuO4+δ (Hg1201) that the characteristic temperature T* marks the onset of an unusual magnetic order. Together with recent results for YBCO, this observation constitutes a demonstration of the universal existence of such a state. The findings appear to rule out theories that regard T* as a crossover temperature rather than a phase transition temperature. Instead, they are consistent with a variant of previously proposed charge-current-loop order that involves apical oxygen orbitals, and with the notion that many of the unusual properties arise from the presence of a quantum-critical point.
Original language | English (US) |
---|---|
Pages (from-to) | 372-375 |
Number of pages | 4 |
Journal | Nature |
Volume | 455 |
Issue number | 7211 |
DOIs | |
State | Published - Sep 18 2008 |