Abstract
High-resolution full lung CT scans now enable the detailed segmentation of airway trees up to the 6th branching generation. The airway binary masks display very complex tree structures that may encode biological information relevant to disease risk and yet remain challenging to exploit via traditional methods such as meshing or skeletonization. Recent clinical studies suggest that some variations in shape patterns and caliber of the human airway tree are highly associated with adverse health outcomes, including all-cause mortality and incident COPD. However, quantitative characterization of variations observed on CT segmented airway tree remain incomplete, as does our understanding of the clinical and developmental implications of such. In this work, we present an unsupervised deep-learning pipeline for feature extraction and clustering of human airway trees, learned directly from projections of 3D airway segmentations. We identify four reproducible and clinically distinct airway sub-types in the MESA Lung CT cohort.
Original language | English (US) |
---|---|
Title of host publication | IEEE International Symposium on Biomedical Imaging, ISBI 2024 - Conference Proceedings |
Publisher | IEEE Computer Society |
ISBN (Electronic) | 9798350313338 |
DOIs | |
State | Published - 2024 |
Event | 21st IEEE International Symposium on Biomedical Imaging, ISBI 2024 - Athens, Greece Duration: May 27 2024 → May 30 2024 |
Publication series
Name | Proceedings - International Symposium on Biomedical Imaging |
---|---|
ISSN (Print) | 1945-7928 |
ISSN (Electronic) | 1945-8452 |
Conference
Conference | 21st IEEE International Symposium on Biomedical Imaging, ISBI 2024 |
---|---|
Country/Territory | Greece |
City | Athens |
Period | 5/27/24 → 5/30/24 |
Bibliographical note
Publisher Copyright:© 2024 IEEE.
Keywords
- Airway structure
- Community Detection
- Deep Learning
- Lung CT