Abstract
Current low-dimensional aerodynamic modeling capabilities are greatly challenged in the face of aggressive flight maneuvers, such as rapid pitching motions that lead to aerodynamic stall. Nonlinearities associated with leading-edge vortex development and flow separation push existing real-time-capable aerodynamics models beyond their predictive limits. The inability to accurately predict the aerodynamic response of an aircraft to sharp maneuvers makes flight simulation for pilot training unrealistic and, thus, ineffective at adequately preparing pilots to safely handle compromising flight scenarios. Inaccurate low-dimensional models also put practical approaches for aerodynamic optimization and control out of reach. In the present development, we make a push toward realizing real-time-capable models with enhanced predictive performance for flight operations by considering the simpler problem of modeling an aggressively pitching airfoil in a low-dimensional manner. We propose a parameter-varying model, composed of three coupled quasi-linear sub-models, to approximate the response of an airfoil to arbitrarily prescribed aggressive ramp-hold pitching kinematics. An output error minimization strategy is used to identify the low-dimensional quasi-linear parameter-varying sub-models from input-output data gathered from low-Reynolds number (Re = 100) direct numerical fluid dynamics simulations. The resulting models have noteworthy predictive capabilities for arbitrary ramp-hold pitching maneuvers spanning a broad range of operating points, thus making the models especially useful for aerodynamic optimization and real-time control and simulation.
Original language | English (US) |
---|---|
Title of host publication | 53rd AIAA Aerospace Sciences Meeting |
Publisher | American Institute of Aeronautics and Astronautics Inc, AIAA |
ISBN (Print) | 9781624103438 |
DOIs | |
State | Published - 2015 |
Event | 53rd AIAA Aerospace Sciences Meeting, 2015 - Kissimmee, United States Duration: Jan 5 2015 → Jan 9 2015 |
Publication series
Name | 53rd AIAA Aerospace Sciences Meeting |
---|
Other
Other | 53rd AIAA Aerospace Sciences Meeting, 2015 |
---|---|
Country/Territory | United States |
City | Kissimmee |
Period | 1/5/15 → 1/9/15 |
Bibliographical note
Funding Information:The authors extend their thanks to Pieter Gebraad, Vincent Verdult, and Michel Verhaegen for providing access to the BILLPV Toolbox, v.2.2. This work was supported by the Air Force Office of Scientific Research under awards FA9550-13-C-0012 and FA9550-12-1-0075
Publisher Copyright:
© 2015 by Maziar S. Hemati. Published by the American Institute of Aeronautics and Astronautics, Inc.