TY - JOUR
T1 - Unspanned stochastic volatility and fixed income derivatives pricing
AU - Casassus, Jaime
AU - Collin-Dufresne, Pierre
AU - Goldstein, Bob
PY - 2005/11
Y1 - 2005/11
N2 - We propose a parsimonious 'unspanned stochastic volatility' model of the term structure and study its implications for fixed-income option prices. The drift and quadratic variation of the short rate are affine in three state variables (the short rate, its long-term mean and variance) which follow a joint Markov (vector) process. Yet, bond prices are exponential affine functions of only two state variables, independent of the current interest rate volatility level. Because this result holds for an arbitrary volatility process, such a process can be calibrated to match fixed income derivative prices. Furthermore, this model can be 'extended' (by relaxing the time-homogeneity) to fit any arbitrary term structure. In its 'HJM' form, this model nests the analogous stochastic equity volatility model of Heston (1993) [Heston, S.L., 1993. A closed form solution for options with stochastic volatility. Review of Financial Studies 6, 327-343]. In particular, if the volatility process is specified to be affine, closed-form solutions for interest rate options obtain. We propose an efficient algorithm to compute these prices. An application using data on caps and floors shows that the model can capture very well the implied Black spot volatility surface, while simultaneously fitting the observed term structure.
AB - We propose a parsimonious 'unspanned stochastic volatility' model of the term structure and study its implications for fixed-income option prices. The drift and quadratic variation of the short rate are affine in three state variables (the short rate, its long-term mean and variance) which follow a joint Markov (vector) process. Yet, bond prices are exponential affine functions of only two state variables, independent of the current interest rate volatility level. Because this result holds for an arbitrary volatility process, such a process can be calibrated to match fixed income derivative prices. Furthermore, this model can be 'extended' (by relaxing the time-homogeneity) to fit any arbitrary term structure. In its 'HJM' form, this model nests the analogous stochastic equity volatility model of Heston (1993) [Heston, S.L., 1993. A closed form solution for options with stochastic volatility. Review of Financial Studies 6, 327-343]. In particular, if the volatility process is specified to be affine, closed-form solutions for interest rate options obtain. We propose an efficient algorithm to compute these prices. An application using data on caps and floors shows that the model can capture very well the implied Black spot volatility surface, while simultaneously fitting the observed term structure.
KW - HJM
KW - Stochastic volatility
KW - Term structure
UR - http://www.scopus.com/inward/record.url?scp=25144435359&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=25144435359&partnerID=8YFLogxK
U2 - 10.1016/j.jbankfin.2005.02.007
DO - 10.1016/j.jbankfin.2005.02.007
M3 - Article
AN - SCOPUS:25144435359
SN - 0378-4266
VL - 29
SP - 2723
EP - 2749
JO - Journal of Banking and Finance
JF - Journal of Banking and Finance
IS - 11
ER -