Abstract
Converting biomass-based feedstocks into polymers not only reduces our reliance on fossil fuels, but also furnishes multiple opportunities to design biorenewable polymers with targeted properties and functionalities. Here we report a series of high glass transition temperature (Tg up to 184 °C) polyesters derived from sugar-based furan derivatives as well as a joint experimental and theoretical study of substituent effects on their thermal properties. Surprisingly, we find that polymers with moderate steric hindrance exhibit the highest Tg values. Through a detailed Ramachandran-type analysis of the rotational flexibility of the polymer backbone, we find that additional steric hindrance does not necessarily increase chain stiffness in these polyesters. We attribute this interesting structure-property relationship to a complex interplay between methyl-induced steric strain and the concerted rotations along the polymer backbone. We believe that our findings provide key insight into the relationship between structure and thermal properties across a range of synthetic polymers.
Original language | English (US) |
---|---|
Article number | 2880 |
Journal | Nature communications |
Volume | 9 |
Issue number | 1 |
DOIs | |
State | Published - Dec 1 2018 |
Bibliographical note
Funding Information:Funding for this project was provided by the Center for Sustainable Polymers, a National Science Foundation (NSF) Center for Chemical Innovation (CHE-1413862). J.J., K.U.L. and R.A.D. acknowledge partial support from Cornell University through start-up funding. This research used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. This work also made use of the NMR Facility at Cornell University, which is supported, in part, by the NSF under award number CHE-1531632.
Publisher Copyright:
© 2018, The Author(s).