Unique DNA repair gene variations and potential associations with the primary antibody deficiency syndromes igAD and CVID

Steven M. Offer, Qiang Pan-Hammarström, Lennart Hammarström, Reuben S. Harris

Research output: Contribution to journalArticle

37 Scopus citations

Abstract

Background: Despite considerable effort, the genetic factors responsible for >90% of the antibody deficiency syndromes IgAD and CVID remain elusive. To produce a functionally diverse antibody repertoire B lymphocytes undergo class switch recombination. This process is initiated by AID-catalyzed deamination of cytidine to uridine in switch region DNA. Subsequently, these residues are recognized by the uracil excision enzyme UNG2 or the mismatch repair proteins MutSα (MSH2/MSH6) and MutLα (PMS2/MLH1). Further processing by ubiquitous DNA repair factors is thought to introduce DNA breaks, ultimately leading to class switch recombination and expression of a different antibody isotype. Methodology/Principal Findings: Defects in AID and UNG2 have been shown to result in the primary immunodeficiency hyper-IgM syndrome, leading us to hypothesize that additional, potentially more subtle, DNA repair gene variations may underlie the clinically related antibody deficiencies syndromes IgAD and CVID. In a survey of twenty-seven candidate DNA metabolism genes, markers in MSH2, RAD50, and RAD52 were associated with IgAD/CVID, prompting further investigation into these pathways. Resequencing identified four rare, non-synonymous alleles associated with IgAD/CVID, two in MLH1, one in RAD50, and one in NBS1. One IgAD patient carried heterozygous non-synonymous mutations in MLH1, MSH2, and NBS1. Functional studies revealed that one of the identified mutations, a premature RAD50 stop codon (Q372X), confers increased sensitivity to ionizing radiation. Conclusions: Our results are consistent with a class switch recombination model in which AID-catalyzed uridines are processed by multiple DNA repair pathways. Genetic defects in these DNA repair pathways may contribute to IgAD and CVID.

Original languageEnglish (US)
Article numbere12260
JournalPloS one
Volume5
Issue number8
DOIs
StatePublished - Oct 20 2010

    Fingerprint

Cite this