Uniform proofs as a foundation for logic programming

Dale Miller, Gopalan Nadathur, Frank Pfenning, Andre Scedrov

Research output: Contribution to journalArticle

319 Scopus citations

Abstract

Miller, D., G. Nadathur, F. Pfenning and A. Scedrov, Uniform proofs as a foundation for logic programming, Annals of Pure and Applied Logic 51 (1991) 125-157. A proof-theoretic characterization of logical languages that form suitable bases for Prolog-like programming languages is provided. This characterization is based on the principle that the declarative meaning of a logic program, provided by provability in a logical system, should coincide with its operational meaning, provided by interpreting logical connectives as simple and fixed search instructions. The operational semantics is formalized by the identification of a class of cut-free sequent proofs called uniform proofs. A uniform proof is one that can be found by a goal-directed search that respects the interpretation of the logical connectives as search instructions. The concept of a uniform proof is used to define the notion of an abstract logic programming language, and it is shown that first-order and higher-order Horn clauses with classical provability are examples of such a language. Horn clauses are then generalized to hereditary Harrop formulas and it is shown that first-order and higher-order versions of this new class of formulas are also abstract logic programming languages if the inference rules are those of either intuitionistic or minimal logic. The programming language significance of the various generalizations to first-order Horn clauses is briefly discussed.

Original languageEnglish (US)
Pages (from-to)125-157
Number of pages33
JournalAnnals of Pure and Applied Logic
Volume51
Issue number1-2
DOIs
StatePublished - Mar 14 1991
Externally publishedYes

Fingerprint Dive into the research topics of 'Uniform proofs as a foundation for logic programming'. Together they form a unique fingerprint.

  • Cite this