Unidirectional plasmonic edge modes on general two-dimensional materials

T. Stauber, A. Nemilentsau, T. Low, G. Gómez-Santos

Research output: Contribution to journalArticlepeer-review

1 Scopus citations

Abstract

We investigate the field and spin-momentum coupling of edge plasmons hosted by general two-dimensional materials and identify sweet spots depending on the polarisation plane, ellipticity and the position of an electric dipole relative to the plane and edge. Exciting the dipole at these sweet spots by propagating light leads to uni-directional propagating edge plasmons or edge modes suppression. We also extend previous approximate treatments (Fetter 1985 Phys. Rev. B 32 7676) to include anisotropy and hyperbolic systems, elucidating its predictions for the existence of edge modes. A thorough assessment of the approximate description is carried out, comparing its spin-momentum coupling features in the near field with exact results from Wiener-Hopf techniques. Simulations are also performed confirming the overall picture. Our results shed new light on the quest of chiral plasmonics in 2D materials and should be relevant for future experiments.

Original languageEnglish (US)
Article number045023
Journal2D Materials
Volume6
Issue number4
DOIs
StatePublished - Jul 24 2019

Bibliographical note

Funding Information:
T Stauber A Nemilentsau T Low G G�mez-Santos T Stauber A Nemilentsau T Low G G�mez-Santos Materials Science Factory, Instituto de Ciencias de Materiales de Madrid, CSIC, E-28049, Madrid, Spain Department of Electrical & Computer Engineering, University of Minnesota, Minneapolis, MN 55455, United States of America Departamento de F�sica de la Materia Condensada, Instituto Nicol�s Cabrera and Condensed Matter Physics Center (IFIMAC), Universidad Aut�noma de Madrid, E-28049 Madrid, Spain T Stauber, A Nemilentsau, T Low and G G�mez-Santos 2019-10-01 2019-07-24 13:35:38 cgi/release: Article released bin/incoming: New from .zip National Science Foundation https://doi.org/10.13039/100000001 EFRI-1741660 Secretar�a de Estado de Investigaci�n, Desarrollo e Innovaci�n https://doi.org/10.13039/501100007136 FIS2017-82260-P FIS2015-64886-C5-5-P MDM-2014-0377 yes We investigate the field and spin-momentum coupling of edge plasmons hosted by general two-dimensional materials and identify sweet spots depending on the polarisation plane, ellipticity and the position of an electric dipole relative to the plane and edge. Exciting the dipole at these sweet spots by propagating light leads to uni-directional propagating edge plasmons or edge modes suppression. We also extend previous approximate treatments (Fetter 1985 Phys. Rev . B 32 7676) to include anisotropy and hyperbolic systems, elucidating its predictions for the existence of edge modes. A thorough assessment of the approximate description is carried out, comparing its spin-momentum coupling features in the near field with exact results from Wiener–Hopf techniques. Simulations are also performed confirming the overall picture. Our results shed new light on the quest of chiral plasmonics in 2D materials and should be relevant for future experiments. � 2019 IOP Publishing Ltd [1] Novotny L and Hecht B 2012 Principles of Nano-Optics (Cambridge: Cambridge University Press) 10.1017/CBO9780511794193 Novotny L and Hecht B Principles of Nano-Optics 2012 [2] Ozbay E 2006 Science 311 189 10.1126/science.1114849 Ozbay E Science 311 2006 189 [3] Fetter A L 1985 Phys. Rev. B 32 7676 10.1103/PhysRevB.32.7676 Fetter A L Phys. Rev. 0163-1829 32 B 1985 7676 [4] Volkov V and Mikhailov S 1988 Sov. Phys.—JETP 67 1639 Volkov V and Mikhailov S Sov. Phys.—JETP 67 1988 1639 [5] Mikhailov S A 1995 JETP Lett. 61 418 Mikhailov S A JETP Lett. 61 1995 418 [6] Wang W, Apell P and Kinaret J 2011 Phys. Rev. B 84 085423 10.1103/PhysRevB.84.085423 Wang W, Apell P and Kinaret J Phys. Rev. 84 B 085423 2011 [7] Yan H, Li Z, Li X, Zhu W, Avouris P and Xia F 2012 Nano Lett. 12 3766 10.1021/nl3016335 Yan H, Li Z, Li X, Zhu W, Avouris P and Xia F Nano Lett. 12 2012 3766 [8] Crassee I, Orlita M, Potemski M, Walter A L, Ostler M, Seyller T, Gaponenko I, Chen J and Kuzmenko A B 2012 Nano Lett. 12 2470 10.1021/nl300572y Crassee I, Orlita M, Potemski M, Walter A L, Ostler M, Seyller T, Gaponenko I, Chen J and Kuzmenko A B Nano Lett. 12 2012 2470 [9] Kumada N, Tanabe S, Hibino H, Kamata H, Hashisaka M, Muraki K and Fujisawa T 2013 Nat. Commun. 4 1363 10.1038/ncomms2353 Kumada N, Tanabe S, Hibino H, Kamata H, Hashisaka M, Muraki K and Fujisawa T Nat. Commun. 4 2013 1363 [10] Kumada N, Roulleau P, Roche B, Hashisaka M, Hibino H, Petković I and Glattli D C 2014 Phys. Rev. Lett. 113 266601 10.1103/PhysRevLett.113.266601 Kumada N, Roulleau P, Roche B, Hashisaka M, Hibino H, Petković I and Glattli D C Phys. Rev. Lett. 113 266601 2014 [11] Cohen R and Goldstein M 2018 Phys. Rev. B 98 235103 10.1103/PhysRevB.98.235103 Cohen R and Goldstein M Phys. Rev. 98 B 235103 2018 [12] Jin D, Christensen T, Soljacic M, Fang N X, Lu L and Zhang X 2017 Phys. Rev. Lett. 118 245301 10.1103/PhysRevLett.118.245301 Jin D, Christensen T, Soljacic M, Fang N X, Lu L and Zhang X Phys. Rev. Lett. 118 245301 2017 [13] Pan D, Yu R, Xu H and García de Abajo F J 2017 Nat. Commun. 8 1243 10.1038/s41467-017-01205-z Pan D, Yu R, Xu H and García de Abajo F J Nat. Commun. 8 2017 1243 [14] Sabbaghi M, Lee H W, Stauber T and Kim K S 2015 Phys. Rev. B 92 195429 10.1103/PhysRevB.92.195429 Sabbaghi M, Lee H W, Stauber T and Kim K S Phys. Rev. 92 B 195429 2015 [15] Sabbaghi M, Lee H W and Stauber T 2018 Phys. Rev. B 98 075424 10.1103/PhysRevB.98.075424 Sabbaghi M, Lee H W and Stauber T Phys. Rev. 98 B 075424 2018 [16] Bliokh K Y, Rodriguez-Fortuño F J, Bekshaev A Y, Kivshar Y S and Nori F 2018 Opt. Lett. 43 963 10.1364/OL.43.000963 Bliokh K Y, Rodriguez-Fortuño F J, Bekshaev A Y, Kivshar Y S and Nori F Opt. Lett. 43 2018 963 [17] Duppen B V, Tomadin A, Grigorenko A N and Polini M 2016 2D Mater. 3 015011 10.1088/2053-1583/3/1/015011 Duppen B V, Tomadin A, Grigorenko A N and Polini M 2D Mater. 2053-1583 3 1 015011 2016 [18] Kumar A, Nemilentsau A, Fung K H, Hanson G, Fang N X and Low T 2016 Phys. Rev. B 93 041413 10.1103/PhysRevB.93.041413 Kumar A, Nemilentsau A, Fung K H, Hanson G, Fang N X and Low T Phys. Rev. 93 B 041413 2016 [19] Song J C W and Rudner M S 2016 Proc. Natl Acad. Sci. 113 4658 10.1073/pnas.1519086113 Song J C W and Rudner M S Proc. Natl Acad. Sci. 0027-8424 113 2016 4658 [20] Lee S Y, Lee I M, Park J, Oh S, Lee W, Kim K Y and Lee B 2012 Phys. Rev. Lett. 108 213907 10.1103/PhysRevLett.108.213907 Lee S Y, Lee I M, Park J, Oh S, Lee W, Kim K Y and Lee B Phys. Rev. Lett. 108 213907 2012 [21] Lin J, Mueller J P B, Wang Q, Yuan G, Antoniou N, Yuan X C and Capasso F 2013 Science 340 331 10.1126/science.1233746 Lin J, Mueller J P B, Wang Q, Yuan G, Antoniou N, Yuan X C and Capasso F Science 340 2013 331 [22] Bliokh K Y, Rodriguez-Fortuño F J, Nori F and Zayats A V 2015 Nat. Photon. 9 796 10.1038/nphoton.2015.201 Bliokh K Y, Rodriguez-Fortuño F J, Nori F and Zayats A V Nat. Photon. 9 2015 796 [23] Mechelen T V and Jacob Z 2016 Optica 3 118 10.1364/OPTICA.3.000118 Mechelen T V and Jacob Z Optica 3 2016 118 [24] Lodahl P, Mahmoodian S, Stobbe S, Rauschenbeutel A, Schneeweiss P, Volz J, Pichler H and Zoller P 2017 Nature 541 473 10.1038/nature21037 Lodahl P, Mahmoodian S, Stobbe S, Rauschenbeutel A, Schneeweiss P, Volz J, Pichler H and Zoller P Nature 541 2017 473 [25] Bliokh K Y, Smirnova D and Nori F 2015 Science 348 1448 10.1126/science.aaa9519 Bliokh K Y, Smirnova D and Nori F Science 348 2015 1448 [26] Low T and Avouris P 2014 ACS Nano 8 1086 10.1021/nn406627u Low T and Avouris P ACS Nano 8 2014 1086 [27] Goncalves P A D, Xiao S, Peres N M R and Mortensen N A 2017 ACS Photon. 4 3045 10.1021/acsphotonics.7b00558 Goncalves P A D, Xiao S, Peres N M R and Mortensen N A ACS Photon. 4 2017 3045 [28] Ma W et al 2018 Nature 562 557 10.1038/s41586-018-0618-9 Ma W et al Nature 562 2018 557 [29] Nemilentsau A, Stauber T, Gómez-Santos G, Luskin M and Low T 2019 Phys. Rev. B 99 201405 10.1103/PhysRevB.99.201405 Nemilentsau A, Stauber T, Gómez-Santos G, Luskin M and Low T Phys. Rev. 99 B 201405 2019 [30] Picardi M F, Zayats A V and Rodríguez-Fortuño F J 2018 Phys. Rev. Lett. 120 117402 10.1103/PhysRevLett.120.117402 Picardi M F, Zayats A V and Rodríguez-Fortuño F J Phys. Rev. Lett. 120 117402 2018 [31] Koppens F H L, Chang D E and Garcia de Abajo F J 2011 Nano Lett. 11 3370 10.1021/nl201771h Koppens F H L, Chang D E and Garcia de Abajo F J Nano Lett. 11 2011 3370 [32] Grigorenko A N, Polini M and Novoselov K S 2012 Nat. Photon. 6 749 10.1038/nphoton.2012.262 Grigorenko A N, Polini M and Novoselov K S Nat. Photon. 6 2012 749 [33] Stauber T 2014 J. Phys.: Condens. Matter 26 123201 10.1088/0953-8984/26/12/123201 Stauber T J. Phys.: Condens. Matter 0953-8984 26 12 123201 2014 [34] Gonçalves P A D and Peres N M R 2016 An Introduction to Graphene Plasmonics (Singapore: World Scientific) 10.1142/9948 Gonçalves P A D and Peres N M R An Introduction to Graphene Plasmonics 2016 [35] Basov D N, Fogler M M and García de Abajo F J 2016 Science 354 aag1992 10.1126/science.aag1992 Basov D N, Fogler M M and García de Abajo F J Science 354 2016 aag1992 [36] Low T, Chaves A, Caldwell J D, Kumar A, Fang N X, Avouris P, Heinz T F, Guinea F, Martin-Moreno L and Koppens F 2017 Nat. Mater. 16 182 10.1038/nmat4792 Low T, Chaves A, Caldwell J D, Kumar A, Fang N X, Avouris P, Heinz T F, Guinea F, Martin-Moreno L and Koppens F Nat. Mater. 16 2017 182 [37] Fei Z et al 2012 Nature 487 82 10.1038/nature11253 Fei Z et al Nature 487 2012 82 [38] Chen J et al 2012 Nature 487 77 10.1038/nature11254 Chen J et al Nature 487 2012 77 [39] Nikitin A Y, Guinea F, García-Vidal F J and Martín-Moreno L 2011 Phys. Rev. B 84 161407 10.1103/PhysRevB.84.161407 Nikitin A Y, Guinea F, García-Vidal F J and Martín-Moreno L Phys. Rev. 84 B 161407 2011 [40] Fei Z et al 2015 Nano Lett. 15 8271 10.1021/acs.nanolett.5b03834 Fei Z et al Nano Lett. 15 2015 8271 [41] Nikitin A Y et al 2016 Nat. Photon. 10 239 10.1038/nphoton.2016.44 Nikitin A Y et al Nat. Photon. 10 2016 239 [42] Xu Q, Ma T, Danesh M, Shivananju B N, Gan S, Song J, Qiu C W, Cheng H M, Ren W and Bao Q 2017 Light Sci. Appl. 6 e16204 10.1038/lsa.2016.204 Xu Q, Ma T, Danesh M, Shivananju B N, Gan S, Song J, Qiu C W, Cheng H M, Ren W and Bao Q Light Sci. Appl. 6 e16204 2017 [43] Bisharat D J and Sievenpiper D F 2017 Phys. Rev. Lett. 119 106802 10.1103/PhysRevLett.119.106802 Bisharat D J and Sievenpiper D F Phys. Rev. Lett. 119 106802 2017 [44] Song J C W and Kats M A 2016 Nano Lett. 16 7346 10.1021/acs.nanolett.6b02559 Song J C W and Kats M A Nano Lett. 16 2016 7346 [45] Tang Y and Cohen A E 2010 Phys. Rev. Lett. 104 163901 10.1103/PhysRevLett.104.163901 Tang Y and Cohen A E Phys. Rev. Lett. 104 163901 2010 [46] Tang Y and Cohen A E 2011 Science 332 333 10.1126/science.1202817 Tang Y and Cohen A E Science 332 2011 333

Keywords

  • graphene and 2D materials
  • plasmonic edge modes
  • spin-momentum coupling
  • surface plasmon polariton

Fingerprint Dive into the research topics of 'Unidirectional plasmonic edge modes on general two-dimensional materials'. Together they form a unique fingerprint.

Cite this