Underwater multi-robot convoying using visual tracking by detection

Florian Shkurti, Wei Di Chang, Peter Henderson, Md Jahidul Islam, Juan Camilo Gamboa Higuera, Jimmy Li, Travis Manderson, Anqi Xu, Gregory Dudek, Junaed Sattar

Research output: Chapter in Book/Report/Conference proceedingConference contribution

59 Scopus citations

Abstract

We present a robust multi-robot convoying approach that relies on visual detection of the leading agent, thus enabling target following in unstructured 3-D environments. Our method is based on the idea of tracking-by-detection, which interleaves efficient model-based object detection with temporal filtering of image-based bounding box estimation. This approach has the important advantage of mitigating tracking drift (i.e. drifting away from the target object), which is a common symptom of model-free trackers and is detrimental to sustained convoying in practice. To illustrate our solution, we collected extensive footage of an underwater robot in ocean settings, and hand-annotated its location in each frame. Based on this dataset, we present an empirical comparison of multiple tracker variants, including the use of several convolutional neural networks, both with and without recurrent connections, as well as frequency-based model-free trackers. We also demonstrate the practicality of this tracking-by-detection strategy in real-world scenarios by successfully controlling a legged underwater robot in five degrees of freedom to follow another robot's independent motion.

Original languageEnglish (US)
Title of host publicationIROS 2017 - IEEE/RSJ International Conference on Intelligent Robots and Systems
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages4189-4196
Number of pages8
ISBN (Electronic)9781538626825
DOIs
StatePublished - Dec 13 2017
Event2017 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2017 - Vancouver, Canada
Duration: Sep 24 2017Sep 28 2017

Publication series

NameIEEE International Conference on Intelligent Robots and Systems
Volume2017-September
ISSN (Print)2153-0858
ISSN (Electronic)2153-0866

Other

Other2017 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2017
Country/TerritoryCanada
CityVancouver
Period9/24/179/28/17

Bibliographical note

Publisher Copyright:
© 2017 IEEE.

Fingerprint

Dive into the research topics of 'Underwater multi-robot convoying using visual tracking by detection'. Together they form a unique fingerprint.

Cite this