Understanding the Insertion Pathways and Chain Walking Mechanisms of α-Diimine Nickel Catalysts for α-Olefin Polymerization: A 13C NMR Spectroscopic Investigation

Kyle S. O'Connor, Jessica R. Lamb, Tulaza Vaidya, Ivan Keresztes, Kristine Klimovica, Anne M. LaPointe, Olafs Daugulis, Geoffrey W. Coates

Research output: Contribution to journalArticlepeer-review

57 Scopus citations


Nickel α-diimine catalysts have been previously shown to perform the chain straightening polymerization of α-olefins to produce materials with melting temperatures (Tm) similar to linear low density polyethylene (Tm = 100-113 °C). Branching defects due to mechanistic errors during the polymerization currently hinder access to high density polyethylene (Tm = 135 °C) from α-olefins. Understanding the intricacies of nickel α-diimine catalyzed α-olefin polymerization can lead to improved ligand designs that should allow production of chain-straightened polymers. We report a 13C NMR study of poly(α-olefins) produced from monomers with 13C-labeled carbons - specifically 1-decene with a 13C-label in the 2-position and 1-dodecene with a 13C-label in the ω-position - using a series of α-diimine nickel catalysts. Furthermore, we developed a mathematical model capable of quantifying the resulting 13C NMR data into eight unique insertion pathways: 2,1- or 1,2- insertion from the primary chain end position (1°), the penultimate chain end position (2p°), secondary positions on the polymer backbone (2°), and previously installed methyl groups (1m°). With this model, we accurately determined overall regiochemistry of insertion and overall preference for primary versus secondary insertion pathways using nickel catalysts under various conditions. Beyond this, our model provides the tools necessary for determining how ligand structure and polymerization conditions affect catalyst behavior for α-olefin polymerizations.

Original languageEnglish (US)
Pages (from-to)7010-7027
Number of pages18
Issue number18
StatePublished - Sep 26 2017
Externally publishedYes

Bibliographical note

Funding Information:
Funding for this work was provided by the Center for Sustainable Polymers, a National Science Foundation (NSF)-supported Center for Chemical Innovation (CHE-1413862). This work made use of the NMR Facility at Cornell University and is supported, in part, by the NSF under the Award CHE-1531632. J.R.L. thanks the NSF (DGE-1144153) for a graduate fellowship. O.D. thanks the Welch Foundation (Chair E-0044) for supporting this research.

Publisher Copyright:
© 2017 American Chemical Society.

Copyright 2017 Elsevier B.V., All rights reserved.


Dive into the research topics of 'Understanding the Insertion Pathways and Chain Walking Mechanisms of α-Diimine Nickel Catalysts for α-Olefin Polymerization: A 13C NMR Spectroscopic Investigation'. Together they form a unique fingerprint.

Cite this