Understanding the Electronic Structure Evolution of Epitaxial LaNi1- xFexO3Thin Films for Water Oxidation

Le Wang, Prajwal Adiga, Jiali Zhao, Widitha S. Samarakoon, Kelsey A. Stoerzinger, Steven R. Spurgeon, Bethany E. Matthews, Mark E. Bowden, Peter V. Sushko, Tiffany C. Kaspar, George E. Sterbinsky, Steve M. Heald, Han Wang, Linda W. Wangoh, Jinpeng Wu, Er Jia Guo, Haijie Qian, Jiaou Wang, Tamas Varga, Suntharampillai ThevuthasanZhenxing Feng, Wanli Yang

Research output: Contribution to journalArticlepeer-review

33 Scopus citations

Abstract

Rare earth nickelates including LaNiO3 are promising catalysts for water electrolysis to produce oxygen gas. Recent studies report that Fe substitution for Ni can significantly enhance the oxygen evolution reaction (OER) activity of LaNiO3. However, the role of Fe in increasing the activity remains ambiguous, with potential origins that are both structural and electronic in nature. On the basis of a series of epitaxial LaNi1-xFexO3 thin films synthesized by molecular beam epitaxy, we report that Fe substitution tunes the Ni oxidation state in LaNi1-xFexO3 and a volcano-like OER trend is observed, with x = 0.375 being the most active. Spectroscopy and ab initio modeling reveal that high-valent Fe3+δ cationic species strongly increase the transition-metal (TM) 3d bandwidth via Ni-O-Fe bridges and enhance TM 3d-O 2p hybridization, boosting the OER activity. These studies deepen our understanding of structural and electronic contributions that give rise to enhanced OER activity in perovskite oxides.

Original languageEnglish (US)
Pages (from-to)8324-8331
Number of pages8
JournalNano letters
Volume21
Issue number19
DOIs
StatePublished - Oct 13 2021
Externally publishedYes

Bibliographical note

Publisher Copyright:
©

Keywords

  • Fe substitution
  • LaNiO
  • charge transfer
  • oxygen evolution reaction
  • spectroscopy

Fingerprint

Dive into the research topics of 'Understanding the Electronic Structure Evolution of Epitaxial LaNi1- xFexO3Thin Films for Water Oxidation'. Together they form a unique fingerprint.

Cite this