Understanding Iterative Revision from Human-Written Text

Wanyu Du, Vipul Raheja, Dhruv Kumar, Zae Myung Kim, Melissa Lopez, Dongyeop Kang

Research output: Chapter in Book/Report/Conference proceedingConference contribution

24 Scopus citations

Abstract

Writing is, by nature, a strategic, adaptive, and more importantly, an iterative process. A crucial part of writing is editing and revising the text. Previous works on text revision have focused on defining edit intention taxonomies within a single domain or developing computational models with a single level of edit granularity, such as sentence-level edits, which differ from human's revision cycles. This work describes ITERATER: the first large-scale, multi-domain, edit-intention annotated corpus of iteratively revised text. In particular, ITERATER is collected based on a new framework to comprehensively model the iterative text revisions that generalize to various domains of formal writing, edit intentions, revision depths, and granularities. When we incorporate our annotated edit intentions, both generative and edit-based text revision models significantly improve automatic evaluations. Through our work, we better understand the text revision process, making vital connections between edit intentions and writing quality, enabling the creation of diverse corpora to support computational modeling of iterative text revisions.

Original languageEnglish (US)
Title of host publicationACL 2022 - 60th Annual Meeting of the Association for Computational Linguistics, Proceedings of the Conference (Long Papers)
EditorsSmaranda Muresan, Preslav Nakov, Aline Villavicencio
PublisherAssociation for Computational Linguistics (ACL)
Pages3573-3590
Number of pages18
ISBN (Electronic)9781955917216
StatePublished - 2022
Event60th Annual Meeting of the Association for Computational Linguistics, ACL 2022 - Dublin, Ireland
Duration: May 22 2022May 27 2022

Publication series

NameProceedings of the Annual Meeting of the Association for Computational Linguistics
Volume1
ISSN (Print)0736-587X

Conference

Conference60th Annual Meeting of the Association for Computational Linguistics, ACL 2022
Country/TerritoryIreland
CityDublin
Period5/22/225/27/22

Bibliographical note

Publisher Copyright:
© 2022 Association for Computational Linguistics.

Fingerprint

Dive into the research topics of 'Understanding Iterative Revision from Human-Written Text'. Together they form a unique fingerprint.

Cite this