Understanding, controlling and programming cooperativity in self-assembled polynuclear complexes in solution

Thomas Riis-Johannessen, Natalia Dalla Favera, Tanya K. Todorova, Stefan M. Huber, Laura Gagliardi, Claude Piguet

Research output: Contribution to journalArticlepeer-review

40 Scopus citations

Abstract

Deviations from statistical binding, that is cooperativity, in self-assembled polynuclear complexes partly result from intermetallic interactions ΔM,M, whose magnitudes in solution depend on a balance between electrostatic repulsion and solvation energies. These two factors have been reconciled in a simple point-charge model, which suggests severe and counter-intuitive deviations from predictions based solely on the Coulomb law when considering the variation of △M,M with metallic charge and intermetallic separation in linear polynuclear helicates. To demonstrate this intriguing behaviour, the ten microscopic interactions that define the thermodynamic formation constants of some twenty-nine homometallic and heterometallic polynuclear triple-stranded helicates obtained from the coordination of the segmental ligands Ll-L11 with Zn2+ (a spherical d-block cation) and Lu3+ (a spherical 4f-block cation), have been extracted by using the site binding model. As predicted, but in contrast with the simplistic coulombic approach, the apparent intramolecular intermetallic interactions in solution are found to be i) more repulsive at long distance (ΔELu,Lu;1-4>ΔELu,Lu 1-2), ii) of larger magnitude when Zn2+ replaces Lu 3+ (ΔEZn,Lu1-2>ΔE Lu,Lu1-2) and iii) attractive between two triply charged cations held at some specific distance (ΔELu,Lu 1-3<0). The consequences of these trends are discussed for the design of polynuclear complexes in solution.

Original languageEnglish (US)
Pages (from-to)12702-12718
Number of pages17
JournalChemistry - A European Journal
Volume15
Issue number46
DOIs
StatePublished - Nov 23 2009

Keywords

  • Cooperativity
  • Polynuclear complexes
  • Self-assembly
  • Solvation
  • Thermodynamics

Fingerprint

Dive into the research topics of 'Understanding, controlling and programming cooperativity in self-assembled polynuclear complexes in solution'. Together they form a unique fingerprint.

Cite this