TY - JOUR
T1 - Understanding, controlling and programming cooperativity in self-assembled polynuclear complexes in solution
AU - Riis-Johannessen, Thomas
AU - Favera, Natalia Dalla
AU - Todorova, Tanya K.
AU - Huber, Stefan M.
AU - Gagliardi, Laura
AU - Piguet, Claude
PY - 2009/11/23
Y1 - 2009/11/23
N2 - Deviations from statistical binding, that is cooperativity, in self-assembled polynuclear complexes partly result from intermetallic interactions ΔM,M, whose magnitudes in solution depend on a balance between electrostatic repulsion and solvation energies. These two factors have been reconciled in a simple point-charge model, which suggests severe and counter-intuitive deviations from predictions based solely on the Coulomb law when considering the variation of △M,M with metallic charge and intermetallic separation in linear polynuclear helicates. To demonstrate this intriguing behaviour, the ten microscopic interactions that define the thermodynamic formation constants of some twenty-nine homometallic and heterometallic polynuclear triple-stranded helicates obtained from the coordination of the segmental ligands Ll-L11 with Zn2+ (a spherical d-block cation) and Lu3+ (a spherical 4f-block cation), have been extracted by using the site binding model. As predicted, but in contrast with the simplistic coulombic approach, the apparent intramolecular intermetallic interactions in solution are found to be i) more repulsive at long distance (ΔELu,Lu;1-4>ΔELu,Lu 1-2), ii) of larger magnitude when Zn2+ replaces Lu 3+ (ΔEZn,Lu1-2>ΔE Lu,Lu1-2) and iii) attractive between two triply charged cations held at some specific distance (ΔELu,Lu 1-3<0). The consequences of these trends are discussed for the design of polynuclear complexes in solution.
AB - Deviations from statistical binding, that is cooperativity, in self-assembled polynuclear complexes partly result from intermetallic interactions ΔM,M, whose magnitudes in solution depend on a balance between electrostatic repulsion and solvation energies. These two factors have been reconciled in a simple point-charge model, which suggests severe and counter-intuitive deviations from predictions based solely on the Coulomb law when considering the variation of △M,M with metallic charge and intermetallic separation in linear polynuclear helicates. To demonstrate this intriguing behaviour, the ten microscopic interactions that define the thermodynamic formation constants of some twenty-nine homometallic and heterometallic polynuclear triple-stranded helicates obtained from the coordination of the segmental ligands Ll-L11 with Zn2+ (a spherical d-block cation) and Lu3+ (a spherical 4f-block cation), have been extracted by using the site binding model. As predicted, but in contrast with the simplistic coulombic approach, the apparent intramolecular intermetallic interactions in solution are found to be i) more repulsive at long distance (ΔELu,Lu;1-4>ΔELu,Lu 1-2), ii) of larger magnitude when Zn2+ replaces Lu 3+ (ΔEZn,Lu1-2>ΔE Lu,Lu1-2) and iii) attractive between two triply charged cations held at some specific distance (ΔELu,Lu 1-3<0). The consequences of these trends are discussed for the design of polynuclear complexes in solution.
KW - Cooperativity
KW - Polynuclear complexes
KW - Self-assembly
KW - Solvation
KW - Thermodynamics
UR - http://www.scopus.com/inward/record.url?scp=71549125260&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=71549125260&partnerID=8YFLogxK
U2 - 10.1002/chem.200900904
DO - 10.1002/chem.200900904
M3 - Article
C2 - 19844923
AN - SCOPUS:71549125260
SN - 0947-6539
VL - 15
SP - 12702
EP - 12718
JO - Chemistry - A European Journal
JF - Chemistry - A European Journal
IS - 46
ER -