TY - JOUR
T1 - Understanding coherence and integration in integrated STEM curriculum
AU - Roehrig, Gillian H.
AU - Dare, Emily A.
AU - Ring-Whalen, Elizabeth
AU - Wieselmann, Jeanna R.
N1 - Publisher Copyright:
© 2021, The Author(s).
PY - 2021/1/13
Y1 - 2021/1/13
N2 - Background: Few tools or rubrics exist to assess the quality of integrated STEM curricula, and existing tools focus on checklists of characteristics of integrated STEM. While such instruments provide important information about the presence and quality of certain curricular components, they do not assess the level and nature of integration of the curriculum as a whole. Thus, this study explores the development of a process focused to understand the nature of integration within a STEM curriculum unit. Findings: A conceptual flow graphic (CFG) was constructed for 50 integrated STEM curriculum units. Patterns in the nature of the interdisciplinary connections were used to categorize and understand the nature of integration and curricular coherence within each unit. The units formed four broad types of integrated STEM curricula: (i) coherent science unit with loosely connected engineering design challenge (EDC), (ii) engineering design-focused unit with limited connections to science content, (iii) engineering design unit with science content as context, and (iv) integrated and coherent STEM units. All physical science units were in the integrated and coherent category with strong conceptual integration between the main science concepts and the EDC. Curricula based in the Earth and life sciences generally lacked conceptual integration between the science content and the EDC and relied on the engineering design process to provide a coherent storyline for the unit. Conclusions: Our study shows that engineering practices can serve as a contextual integrator within a STEM unit. The utilization of an EDC also provides the potential for conceptual integration because engineering is grounded in the application of science and mathematics. Integrated STEM curricula that purposefully include science and mathematics concepts necessary to develop solutions to the EDC engage students in authentic engineering experiences and provide conceptual integration between the disciplines. However, the alignment of grade-level science standards with the EDC can be problematic, particularly in life science and Earth science. The CFG process provides a tool for determining the nature of integration between science and mathematics content and an EDC. These connections can be conceptual and/or contextual, as both forms of integration are appropriate depending on the instructional goals.
AB - Background: Few tools or rubrics exist to assess the quality of integrated STEM curricula, and existing tools focus on checklists of characteristics of integrated STEM. While such instruments provide important information about the presence and quality of certain curricular components, they do not assess the level and nature of integration of the curriculum as a whole. Thus, this study explores the development of a process focused to understand the nature of integration within a STEM curriculum unit. Findings: A conceptual flow graphic (CFG) was constructed for 50 integrated STEM curriculum units. Patterns in the nature of the interdisciplinary connections were used to categorize and understand the nature of integration and curricular coherence within each unit. The units formed four broad types of integrated STEM curricula: (i) coherent science unit with loosely connected engineering design challenge (EDC), (ii) engineering design-focused unit with limited connections to science content, (iii) engineering design unit with science content as context, and (iv) integrated and coherent STEM units. All physical science units were in the integrated and coherent category with strong conceptual integration between the main science concepts and the EDC. Curricula based in the Earth and life sciences generally lacked conceptual integration between the science content and the EDC and relied on the engineering design process to provide a coherent storyline for the unit. Conclusions: Our study shows that engineering practices can serve as a contextual integrator within a STEM unit. The utilization of an EDC also provides the potential for conceptual integration because engineering is grounded in the application of science and mathematics. Integrated STEM curricula that purposefully include science and mathematics concepts necessary to develop solutions to the EDC engage students in authentic engineering experiences and provide conceptual integration between the disciplines. However, the alignment of grade-level science standards with the EDC can be problematic, particularly in life science and Earth science. The CFG process provides a tool for determining the nature of integration between science and mathematics content and an EDC. These connections can be conceptual and/or contextual, as both forms of integration are appropriate depending on the instructional goals.
KW - Curriculum assessment
KW - Integrated STEM
KW - Nature of integration
UR - http://www.scopus.com/inward/record.url?scp=85099350183&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85099350183&partnerID=8YFLogxK
U2 - 10.1186/s40594-020-00259-8
DO - 10.1186/s40594-020-00259-8
M3 - Article
AN - SCOPUS:85099350183
SN - 2196-7822
VL - 8
JO - International Journal of STEM Education
JF - International Journal of STEM Education
IS - 1
M1 - 2
ER -