TY - JOUR
T1 - Uncertainty in Gravimetric Analysis Required for LEV III Light-Duty Vehicle PM Emission Measurements
AU - Swanson, Jacob
AU - Pham, Liem
AU - Xue, Jian
AU - Durbin, Tom
AU - Russell, Robert
AU - Miller, Wayne
AU - Kittelson, David
AU - Jung, Heejung
AU - Johnson, Kent
N1 - Publisher Copyright:
© 2018 SAE International.
PY - 2018
Y1 - 2018
N2 - With the reduction in PM emission standards for light duty vehicles to 3 mg/mi for current Federal and California standards and subsequently to 1 mg/mi in 2025 for California, the required PM measurements are approaching the detection limits of the gravimetric method. A “filter survey” was conducted with 11 laboratories, representing industry, agencies, research institutes, and academic institutions to analyze the accuracy of the current gravimetric filter measurement method under controlled conditions. The reference filter variability, measured within a given day over periods as short as an hour, ranged from 0.61 μg to 2 μg to 5.0 μg for the 5th, 50th, 95th percentiles (n > 40,000 weights, 317 reference objects), with a laboratory average of 2.5 μg. Reference filters were found to gain approximately 0.01 to 0.56 μg per day (50th percentile) and 0.5 to 1.8 μg per day (95th percentile) with an average of 4.1 μg for the laboratories, which suggests a gas-phase adsorption artifact because metal reference objects did not gain any weight. Tunnel blank biases (n = 615) were much higher than the reference filter bias and had a range from 1.1, 2.8, and 13.0 μg, for the 5th, 50th, and 95th percentiles, with an average of 4.1 μg. Robotically weighed filters showed lower reference filter variability, but expectedly, there were no significant advantages for weighing tunnel blanks. The higher tunnel blank compared to the reference blank suggests that the sample collection system is a relatively significant contamination source. The uncertainties associated with filter weighing for tunnel blanks were generally less than the 5 μg tunnel blank correction allowed under 40 CFR 1066.
AB - With the reduction in PM emission standards for light duty vehicles to 3 mg/mi for current Federal and California standards and subsequently to 1 mg/mi in 2025 for California, the required PM measurements are approaching the detection limits of the gravimetric method. A “filter survey” was conducted with 11 laboratories, representing industry, agencies, research institutes, and academic institutions to analyze the accuracy of the current gravimetric filter measurement method under controlled conditions. The reference filter variability, measured within a given day over periods as short as an hour, ranged from 0.61 μg to 2 μg to 5.0 μg for the 5th, 50th, 95th percentiles (n > 40,000 weights, 317 reference objects), with a laboratory average of 2.5 μg. Reference filters were found to gain approximately 0.01 to 0.56 μg per day (50th percentile) and 0.5 to 1.8 μg per day (95th percentile) with an average of 4.1 μg for the laboratories, which suggests a gas-phase adsorption artifact because metal reference objects did not gain any weight. Tunnel blank biases (n = 615) were much higher than the reference filter bias and had a range from 1.1, 2.8, and 13.0 μg, for the 5th, 50th, and 95th percentiles, with an average of 4.1 μg. Robotically weighed filters showed lower reference filter variability, but expectedly, there were no significant advantages for weighing tunnel blanks. The higher tunnel blank compared to the reference blank suggests that the sample collection system is a relatively significant contamination source. The uncertainties associated with filter weighing for tunnel blanks were generally less than the 5 μg tunnel blank correction allowed under 40 CFR 1066.
KW - Adsorption
KW - Artifact
KW - Blank filter
UR - http://www.scopus.com/inward/record.url?scp=85047725867&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85047725867&partnerID=8YFLogxK
U2 - 10.4271/03-11-03-0024
DO - 10.4271/03-11-03-0024
M3 - Article
AN - SCOPUS:85047725867
SN - 1946-3936
VL - 11
SP - 349
EP - 362
JO - SAE International Journal of Engines
JF - SAE International Journal of Engines
IS - 3
ER -