Abstract
Duo to technology downscaling, embedded systems have increased in complexity and heterogeneity. Increasingly large process, voltage, and temperature variations negatively affect the design and optimization process of these systems. These factors contribute to increased uncertainties that in turn undermine the accuracy and effectiveness of traditional design approaches. In this paper, we formulate the problem of uncertainty aware mapping for multicore embedded systems as a multi-objective optimization problem. We present a solution to this problem that integrates uncertainty models as a new design methodology constructed with Monto Carlo and evolutionary algorithms. The methodology is uncertainty aware because it is able to model uncertainties in design parameters and to identify robust design solutions that limit the influence of these uncertainties onto the objective functions. The proposed design methodology is implemented as a tool that can generate the robust Pareto frontier in the objective space formed by reliability, performance, and energy consumption.
| Original language | English (US) |
|---|---|
| Title of host publication | 2018 19th International Symposium on Quality Electronic Design, ISQED 2018 |
| Publisher | IEEE Computer Society |
| Pages | 176-183 |
| Number of pages | 8 |
| ISBN (Electronic) | 9781538612149 |
| DOIs | |
| State | Published - May 9 2018 |
| Externally published | Yes |
| Event | 19th International Symposium on Quality Electronic Design, ISQED 2018 - Santa Clara, United States Duration: Mar 13 2018 → Mar 14 2018 |
Publication series
| Name | Proceedings - International Symposium on Quality Electronic Design, ISQED |
|---|---|
| Volume | 2018-March |
| ISSN (Print) | 1948-3287 |
| ISSN (Electronic) | 1948-3295 |
Other
| Other | 19th International Symposium on Quality Electronic Design, ISQED 2018 |
|---|---|
| Country/Territory | United States |
| City | Santa Clara |
| Period | 3/13/18 → 3/14/18 |
Bibliographical note
Publisher Copyright:© 2018 IEEE.
Keywords
- Embedded systems
- energy consumption
- performance
- reliability
- robust mapping
- uncertainties