Uncertainty analysis of reaction rates in a finite-rate surface-catalysis model

Cory Sorensen, Paolo Valentini, Thomas E. Schwartzentruber

Research output: Contribution to journalArticlepeer-review

10 Scopus citations

Abstract

The implementation of a finite-rate catalytic-wall boundary condition easily incorporated into generic hypersonic flow solvers is described in detail. Simulations of hypersonic flow over a cylinder are presented using the finite-rate catalytic model parameterized with a test air-silica chemical model comprising the gas-surface reaction mechanisms and their associated rates. It is demonstrated that backward recombination rates should not be arbitrarily set but must be consistent with the gas-phase thermodynamics, otherwise a drift from the equilibrium state may occur. The heat flux predicted by the finite-rate model lies between noncatalytic and supercatalytic limits, depending on the surface temperature. It is found that, even for a constant surface temperature, the oxygen recombination efficiencies determined by the model are not only a function of temperature but also a function of the surface coverage, where recombination efficiencies are seen to rise as coverage decreases. Monte Carlo uncertainty analysis is performed to correlate the influence of individual mechanisms to the stagnation-point heat flux, and the expected progression of dominant mechanisms is found as the surface temperature is raised. Additionally, it is found that increased surface reactivity increases the chemical heat flux while also altering the boundary layer in a manner that decreases the conductive heat flux.

Original languageEnglish (US)
Pages (from-to)407-416
Number of pages10
JournalJournal of thermophysics and heat transfer
Volume26
Issue number3
DOIs
StatePublished - 2012

Fingerprint Dive into the research topics of 'Uncertainty analysis of reaction rates in a finite-rate surface-catalysis model'. Together they form a unique fingerprint.

Cite this