TY - JOUR

T1 - Uncertainty analysis of reaction rates in a finite-rate surface-catalysis model

AU - Sorensen, Cory

AU - Valentini, Paolo

AU - Schwartzentruber, Thomas E.

PY - 2012

Y1 - 2012

N2 - The implementation of a finite-rate catalytic-wall boundary condition easily incorporated into generic hypersonic flow solvers is described in detail. Simulations of hypersonic flow over a cylinder are presented using the finite-rate catalytic model parameterized with a test air-silica chemical model comprising the gas-surface reaction mechanisms and their associated rates. It is demonstrated that backward recombination rates should not be arbitrarily set but must be consistent with the gas-phase thermodynamics, otherwise a drift from the equilibrium state may occur. The heat flux predicted by the finite-rate model lies between noncatalytic and supercatalytic limits, depending on the surface temperature. It is found that, even for a constant surface temperature, the oxygen recombination efficiencies determined by the model are not only a function of temperature but also a function of the surface coverage, where recombination efficiencies are seen to rise as coverage decreases. Monte Carlo uncertainty analysis is performed to correlate the influence of individual mechanisms to the stagnation-point heat flux, and the expected progression of dominant mechanisms is found as the surface temperature is raised. Additionally, it is found that increased surface reactivity increases the chemical heat flux while also altering the boundary layer in a manner that decreases the conductive heat flux.

AB - The implementation of a finite-rate catalytic-wall boundary condition easily incorporated into generic hypersonic flow solvers is described in detail. Simulations of hypersonic flow over a cylinder are presented using the finite-rate catalytic model parameterized with a test air-silica chemical model comprising the gas-surface reaction mechanisms and their associated rates. It is demonstrated that backward recombination rates should not be arbitrarily set but must be consistent with the gas-phase thermodynamics, otherwise a drift from the equilibrium state may occur. The heat flux predicted by the finite-rate model lies between noncatalytic and supercatalytic limits, depending on the surface temperature. It is found that, even for a constant surface temperature, the oxygen recombination efficiencies determined by the model are not only a function of temperature but also a function of the surface coverage, where recombination efficiencies are seen to rise as coverage decreases. Monte Carlo uncertainty analysis is performed to correlate the influence of individual mechanisms to the stagnation-point heat flux, and the expected progression of dominant mechanisms is found as the surface temperature is raised. Additionally, it is found that increased surface reactivity increases the chemical heat flux while also altering the boundary layer in a manner that decreases the conductive heat flux.

UR - http://www.scopus.com/inward/record.url?scp=84867529336&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84867529336&partnerID=8YFLogxK

U2 - 10.2514/1.T3823

DO - 10.2514/1.T3823

M3 - Article

AN - SCOPUS:84867529336

VL - 26

SP - 407

EP - 416

JO - Journal of Thermophysics and Heat Transfer

JF - Journal of Thermophysics and Heat Transfer

SN - 0887-8722

IS - 3

ER -