Ultra-high field parallel imaging of the superior parietal lobule during mental maze solving

Trenton A. Jerde, Scott M. Lewis, Ute Goerke, Pavlos Gourtzelidis, Haris Tzagarakis, Joshua Lynch, Steen Moeller, Pierre-Francois Van de Moortele, Gregor Adriany, Jeran Trangle, Kamil Ugurbil, Apostolos P Georgopoulos

Research output: Contribution to journalArticlepeer-review

14 Scopus citations

Abstract

We used ultra-high field (7 T) fMRI and parallel imaging to scan the superior parietal lobule (SPL) of human subjects as they mentally traversed a maze path in one of four directions (up, down, left, right). A counterbalanced design for maze presentation and a quasi-isotropic voxel (1.46 × 1.46 × 2 mm thick) collection were implemented. Fifty-one percent of single voxels in the SPL were tuned to the direction of the maze path. Tuned voxels were distributed throughout the SPL, bilaterally. A nearest neighbor analysis revealed a "honeycomb" arrangement such that voxels tuned to a particular direction tended to occur in clusters. Three-dimensional (3D) directional clusters were identified in SPL as oriented centroids traversing the cortical depth. There were 13 same-direction clusters per hemisphere containing 22 voxels per cluster, on the average; the mean nearest-neighbor, same-direction intercluster distance was 9.4 mm. These results provide a much finer detail of the directional tuning in SPL, as compared to those obtained previously at 4 T (Gourtzelidis et al. Exp Brain Res 165:273-282, 2005). The more accurate estimates of quantitative clustering parameters in 3D brain space in this study were made possible by the higher signal-to-noise and contrast-to-noise ratios afforded by the higher magnetic field of 7 T as well as the quasi-isotropic design of voxel data collection.

Original languageEnglish (US)
Pages (from-to)551-561
Number of pages11
JournalExperimental Brain Research
Volume187
Issue number4
DOIs
StatePublished - Jun 1 2008

Keywords

  • Directional tuning
  • Parallel imaging
  • Spatial cognition
  • Superior parietal lobule
  • Ultra-high field fMRI

Fingerprint Dive into the research topics of 'Ultra-high field parallel imaging of the superior parietal lobule during mental maze solving'. Together they form a unique fingerprint.

Cite this