Two-layer anti-reflection coatings with optimized sub-bandgap reflection for solar modules

Ian M. Slauch, Michael G. Deceglie, Timothy J. Silverman, Vivian E. Ferry

Research output: Chapter in Book/Report/Conference proceedingConference contribution

6 Scopus citations


The efficiency of a crystalline silicon solar module decreases as its operating temperature rises. Module cooling is possible via selective reflection of sub-bandgap photons so that they are not parasitically absorbed. Selecting from a library of common dielectrics, we numerically optimize the design of two-layer mirrors at the outer glass surface of a crystalline Si solar cell module. The mirrors are designed to maximize the annual energy yield of a module by both reflecting light below the bandgap and enhancing the transmission of light above the bandgap. Combined ray-tracing and finite element simulations determine the power output and temperature of the module over time. Since any two-layer mirror would replace a conventional single-layer glass anti-reflection coating on the module glass, we study the ability of a two-layer structure to improve on a single-layer coating. The best two-layer designs improve the annual energy yield over a module with a glass anti-reflection coating and reduce the module operating temperature.

Original languageEnglish (US)
Title of host publicationNew Concepts in Solar and Thermal Radiation Conversion and Reliability
EditorsJeremy N. Munday, Michael D. Kempe, Peter Bermel
ISBN (Electronic)9781510620896
StatePublished - 2018
EventNew Concepts in Solar and Thermal Radiation Conversion and Reliability 2018 - San Diego, United States
Duration: Aug 19 2018Aug 21 2018

Publication series

NameProceedings of SPIE - The International Society for Optical Engineering
ISSN (Print)0277-786X
ISSN (Electronic)1996-756X


ConferenceNew Concepts in Solar and Thermal Radiation Conversion and Reliability 2018
Country/TerritoryUnited States
CitySan Diego

Bibliographical note

Funding Information:
This work was authored in part by Alliance for Sustainable Energy, LLC, the manager and operator of the National Renewable Energy Laboratory for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308. Funding provided by the U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy (EERE) under Solar Energy Technologies Office (SETO) Agreement Number 30312. The views expressed in the article do not necessarily represent the views of the DOE or the U.S. Government. The U.S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for U.S. Government purposes.

Publisher Copyright:
© 2018 SPIE.


  • Anti-reflection
  • Cooling
  • Photonic structures
  • Selective reflection
  • Solar cells
  • Solar modules
  • Solar thermal management


Dive into the research topics of 'Two-layer anti-reflection coatings with optimized sub-bandgap reflection for solar modules'. Together they form a unique fingerprint.

Cite this