Two-dimensional sensor system for automotive crash prediction

Saber Taghvaeeyan, Rajesh Rajamani

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Citation (Scopus)

Abstract

This project focuses on the use of magnetoresistive and sonar sensors for imminent collision detection in cars. The magnetoresistive sensors are used to measure the magnetic field from another vehicle in close proximity, so as to estimate relative position, velocity and orientation of the vehicle from the measurement. An analytical formulation is presented for the planar variation of the magnetic field from a car as a function of two dimensional position and orientation. While this relationship itself can be used to estimate position and orientation, a challenge is posed by the fact that the parameters in the analytical function vary with the type and model of the encountered car. Since the type of vehicle encountered is not known apriori, the parameters in the magnetic field function are unknown. The use of both sonar and magnetoresisitive sensors and an adaptive estimator is shown to address this problem. While the sonar sensors do not work at very small inter-vehicle distance and have low refresh rates, their use during a short initial time duration leads to a reliable estimator. Experimental results are presented for a laboratory wheeled car door and show that planar position, relative angular position and orientation can be accurately estimated for a range of relative motions at different oblique angles.

Original languageEnglish (US)
Title of host publicationASME 2012 5th Annual Dynamic Systems and Control Conference Joint with the JSME 2012 11th Motion and Vibration Conference, DSCC 2012-MOVIC 2012
Pages681-688
Number of pages8
DOIs
StatePublished - Dec 1 2012
EventASME 2012 5th Annual Dynamic Systems and Control Conference Joint with the JSME 2012 11th Motion and Vibration Conference, DSCC 2012-MOVIC 2012 - Fort Lauderdale, FL, United States
Duration: Oct 17 2012Oct 19 2012

Publication series

NameASME 2012 5th Annual Dynamic Systems and Control Conference Joint with the JSME 2012 11th Motion and Vibration Conference, DSCC 2012-MOVIC 2012
Volume1

Other

OtherASME 2012 5th Annual Dynamic Systems and Control Conference Joint with the JSME 2012 11th Motion and Vibration Conference, DSCC 2012-MOVIC 2012
CountryUnited States
CityFort Lauderdale, FL
Period10/17/1210/19/12

Fingerprint

Sonar
Railroad cars
Sensors
Magnetic fields

Cite this

Taghvaeeyan, S., & Rajamani, R. (2012). Two-dimensional sensor system for automotive crash prediction. In ASME 2012 5th Annual Dynamic Systems and Control Conference Joint with the JSME 2012 11th Motion and Vibration Conference, DSCC 2012-MOVIC 2012 (pp. 681-688). (ASME 2012 5th Annual Dynamic Systems and Control Conference Joint with the JSME 2012 11th Motion and Vibration Conference, DSCC 2012-MOVIC 2012; Vol. 1). https://doi.org/10.1115/DSCC2012-MOVIC2012-8633

Two-dimensional sensor system for automotive crash prediction. / Taghvaeeyan, Saber; Rajamani, Rajesh.

ASME 2012 5th Annual Dynamic Systems and Control Conference Joint with the JSME 2012 11th Motion and Vibration Conference, DSCC 2012-MOVIC 2012. 2012. p. 681-688 (ASME 2012 5th Annual Dynamic Systems and Control Conference Joint with the JSME 2012 11th Motion and Vibration Conference, DSCC 2012-MOVIC 2012; Vol. 1).

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Taghvaeeyan, S & Rajamani, R 2012, Two-dimensional sensor system for automotive crash prediction. in ASME 2012 5th Annual Dynamic Systems and Control Conference Joint with the JSME 2012 11th Motion and Vibration Conference, DSCC 2012-MOVIC 2012. ASME 2012 5th Annual Dynamic Systems and Control Conference Joint with the JSME 2012 11th Motion and Vibration Conference, DSCC 2012-MOVIC 2012, vol. 1, pp. 681-688, ASME 2012 5th Annual Dynamic Systems and Control Conference Joint with the JSME 2012 11th Motion and Vibration Conference, DSCC 2012-MOVIC 2012, Fort Lauderdale, FL, United States, 10/17/12. https://doi.org/10.1115/DSCC2012-MOVIC2012-8633
Taghvaeeyan S, Rajamani R. Two-dimensional sensor system for automotive crash prediction. In ASME 2012 5th Annual Dynamic Systems and Control Conference Joint with the JSME 2012 11th Motion and Vibration Conference, DSCC 2012-MOVIC 2012. 2012. p. 681-688. (ASME 2012 5th Annual Dynamic Systems and Control Conference Joint with the JSME 2012 11th Motion and Vibration Conference, DSCC 2012-MOVIC 2012). https://doi.org/10.1115/DSCC2012-MOVIC2012-8633
Taghvaeeyan, Saber ; Rajamani, Rajesh. / Two-dimensional sensor system for automotive crash prediction. ASME 2012 5th Annual Dynamic Systems and Control Conference Joint with the JSME 2012 11th Motion and Vibration Conference, DSCC 2012-MOVIC 2012. 2012. pp. 681-688 (ASME 2012 5th Annual Dynamic Systems and Control Conference Joint with the JSME 2012 11th Motion and Vibration Conference, DSCC 2012-MOVIC 2012).
@inproceedings{7577751cdcfc4f85a52350c3d717a693,
title = "Two-dimensional sensor system for automotive crash prediction",
abstract = "This project focuses on the use of magnetoresistive and sonar sensors for imminent collision detection in cars. The magnetoresistive sensors are used to measure the magnetic field from another vehicle in close proximity, so as to estimate relative position, velocity and orientation of the vehicle from the measurement. An analytical formulation is presented for the planar variation of the magnetic field from a car as a function of two dimensional position and orientation. While this relationship itself can be used to estimate position and orientation, a challenge is posed by the fact that the parameters in the analytical function vary with the type and model of the encountered car. Since the type of vehicle encountered is not known apriori, the parameters in the magnetic field function are unknown. The use of both sonar and magnetoresisitive sensors and an adaptive estimator is shown to address this problem. While the sonar sensors do not work at very small inter-vehicle distance and have low refresh rates, their use during a short initial time duration leads to a reliable estimator. Experimental results are presented for a laboratory wheeled car door and show that planar position, relative angular position and orientation can be accurately estimated for a range of relative motions at different oblique angles.",
author = "Saber Taghvaeeyan and Rajesh Rajamani",
year = "2012",
month = "12",
day = "1",
doi = "10.1115/DSCC2012-MOVIC2012-8633",
language = "English (US)",
isbn = "9780791845295",
series = "ASME 2012 5th Annual Dynamic Systems and Control Conference Joint with the JSME 2012 11th Motion and Vibration Conference, DSCC 2012-MOVIC 2012",
pages = "681--688",
booktitle = "ASME 2012 5th Annual Dynamic Systems and Control Conference Joint with the JSME 2012 11th Motion and Vibration Conference, DSCC 2012-MOVIC 2012",

}

TY - GEN

T1 - Two-dimensional sensor system for automotive crash prediction

AU - Taghvaeeyan, Saber

AU - Rajamani, Rajesh

PY - 2012/12/1

Y1 - 2012/12/1

N2 - This project focuses on the use of magnetoresistive and sonar sensors for imminent collision detection in cars. The magnetoresistive sensors are used to measure the magnetic field from another vehicle in close proximity, so as to estimate relative position, velocity and orientation of the vehicle from the measurement. An analytical formulation is presented for the planar variation of the magnetic field from a car as a function of two dimensional position and orientation. While this relationship itself can be used to estimate position and orientation, a challenge is posed by the fact that the parameters in the analytical function vary with the type and model of the encountered car. Since the type of vehicle encountered is not known apriori, the parameters in the magnetic field function are unknown. The use of both sonar and magnetoresisitive sensors and an adaptive estimator is shown to address this problem. While the sonar sensors do not work at very small inter-vehicle distance and have low refresh rates, their use during a short initial time duration leads to a reliable estimator. Experimental results are presented for a laboratory wheeled car door and show that planar position, relative angular position and orientation can be accurately estimated for a range of relative motions at different oblique angles.

AB - This project focuses on the use of magnetoresistive and sonar sensors for imminent collision detection in cars. The magnetoresistive sensors are used to measure the magnetic field from another vehicle in close proximity, so as to estimate relative position, velocity and orientation of the vehicle from the measurement. An analytical formulation is presented for the planar variation of the magnetic field from a car as a function of two dimensional position and orientation. While this relationship itself can be used to estimate position and orientation, a challenge is posed by the fact that the parameters in the analytical function vary with the type and model of the encountered car. Since the type of vehicle encountered is not known apriori, the parameters in the magnetic field function are unknown. The use of both sonar and magnetoresisitive sensors and an adaptive estimator is shown to address this problem. While the sonar sensors do not work at very small inter-vehicle distance and have low refresh rates, their use during a short initial time duration leads to a reliable estimator. Experimental results are presented for a laboratory wheeled car door and show that planar position, relative angular position and orientation can be accurately estimated for a range of relative motions at different oblique angles.

UR - http://www.scopus.com/inward/record.url?scp=84885904809&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84885904809&partnerID=8YFLogxK

U2 - 10.1115/DSCC2012-MOVIC2012-8633

DO - 10.1115/DSCC2012-MOVIC2012-8633

M3 - Conference contribution

AN - SCOPUS:84885904809

SN - 9780791845295

T3 - ASME 2012 5th Annual Dynamic Systems and Control Conference Joint with the JSME 2012 11th Motion and Vibration Conference, DSCC 2012-MOVIC 2012

SP - 681

EP - 688

BT - ASME 2012 5th Annual Dynamic Systems and Control Conference Joint with the JSME 2012 11th Motion and Vibration Conference, DSCC 2012-MOVIC 2012

ER -