Abstract
We apply light-front quantization, Pauli-Villars regularization, and numerical techniques to the nonperturbative solution of the dressed-fermion problem in Yukawa theory in 3 + 1 dimensions. The solution is developed as a Fock-state expansion truncated to include at most one fermion and two bosons. The basis includes a negative-metric heavy boson and a negative-metric heavy fermion to provide the necessary cancellations of ultraviolet divergences. The integral equations for the Fock-state wave functions are solved by reducing them to effective one-boson-one-fermion equations for eigenstates with Jz = 1/2. The equations are converted to a matrix equation with a specially tuned quadrature scheme, and the lowest mass state is obtained by diagonalization. Various properties of the dressed-fermion state are then computed from the nonperturbative light-front wave functions. This work is a major step in our development of Pauli-Villars regularization for the nonperturbative solution of four-dimensional field theories and represents a significant advance in the numerical accuracy of such solutions.
Original language | English (US) |
---|---|
Pages (from-to) | 1240-1264 |
Number of pages | 25 |
Journal | Annals of Physics |
Volume | 321 |
Issue number | 5 |
DOIs | |
State | Published - May 2006 |
Bibliographical note
Funding Information:This work is supported in part by the Department of Energy under Contract Nos. DE-AC02-76SF00515, DE-FG02-98ER41087, and DE-FG03-95ER40908.
Funding Information:
This work was supported by the Department of Energy through Contracts DE-AC02-76SF00515 (S.J.B.), DE-FG02-98ER41087 (J.R.H.), and DE-FG03-95ER40908 (G.M.), and by the Minnesota Supercomputing Institute through grants of computing time.
Keywords
- Light-cone quantization
- Pauli-Villars regularization
- Yukawa theory